2.已知(5x2-$\frac{1}{x}$)n的二項(xiàng)展開式系數(shù)和為1024,則展開式中含x項(xiàng)的系數(shù)是(  )
A.-250B.250C.-25D.25

分析 令x=1求(5x2-$\frac{1}{x}$)n的二項(xiàng)展開式系數(shù)和,得n的值;
再利用二項(xiàng)展開式的通項(xiàng)公式求出展開式中含x項(xiàng)的系數(shù).

解答 解:令x=1,得(5x2-$\frac{1}{x}$)n的二項(xiàng)展開式系數(shù)和為(5-1)n=1024,
∴n=5;
∴(5x2-$\frac{1}{x}$)5的二項(xiàng)展開式中,通項(xiàng)公式為
Tr+1=${C}_{5}^{r}$•(5x25-r•${(-\frac{1}{x})}^{r}$=(-1)r•55-r•${C}_{5}^{r}$•x10-3r,
令10-3r=1,解得r=3;
∴展開式中含x項(xiàng)的系數(shù)是
(-1)3•52•${C}_{5}^{3}$=-250.
故選:A.

點(diǎn)評 本題考查了二項(xiàng)式系數(shù)的性質(zhì)與二項(xiàng)展開式通項(xiàng)公式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在多面體ABCDEF中,底面ABCD為正方形,平面AED⊥平面ABCD,AB=$\sqrt{2}$EA=$\sqrt{2}$ED,EF∥BD
( I)證明:AE⊥CD
( II)在棱ED上是否存在點(diǎn)M,使得直線AM與平面EFBD所成角的正弦值為$\frac{\sqrt{6}}{3}$?若存在,確定點(diǎn)M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圖1中,四邊形 ABCD是等腰梯形,AB∥CD,EF∥CD,DM⊥AB于M、交EF于點(diǎn)N,DN=3$\sqrt{3}$,MN=$\sqrt{3}$,現(xiàn)將梯形ABCD沿EF折起,記折起后C、D為C'、D'且使D'M=2$\sqrt{6}$,如圖2示.
(Ⅰ)證明:D'M⊥平面ABFE;,
(Ⅱ)若圖1中,∠A=60°,求點(diǎn)M到平面AED'的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,平行四邊形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥平面ABCD,PA=2,E,F(xiàn)分別為BC,PE的中點(diǎn).
(1)求證:AF⊥平面PED;
(2)求點(diǎn)C到平面PED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,且a1=2a3-3,則S9=(  )
A.25B.27C.50D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=ln(x+e)3(x>0)的值域?yàn)椋?,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.正四面體ABCD中,M是棱AD的中點(diǎn),O是點(diǎn)A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為( 。
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若復(fù)數(shù)z=$\frac{1-3i}{1+i}$(i為虛數(shù)單位),則|z+1|=( 。
A.3B.2C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{$\frac{{a}_{n}}{2n-1}$}的前n項(xiàng)和為Sn,若Sn+$\frac{{4}^{n+1}}{{5}^{n}}$=4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案