A. | 5對 | B. | 6對 | C. | 7對 | D. | 8對 |
分析 利用線面垂直的性質(zhì)與面面垂直的判定尋找互相垂直的平面得出結(jié)論.
解答 解:∵PA⊥平面ABCD,PA?平面PAB,
∴平面PAB⊥平面ABCD,
同理可得平面PAC⊥平面ABCD,平面PAD⊥平面ABCD,
∵PA⊥平面ABCD,BC?平面ABCD,
∴PA⊥BC,又BC⊥AB,PA∩AB=A,
∴BC⊥平面PAB,又BC?平面PBC,
∴平面PBC⊥平面PAB,
同理可得平面PCD⊥平面PAD.
∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD,又BD⊥AC,PA∩AC=A,
∴BD⊥平面PAC,又BD?平面PBD,
∴平面PAC⊥平面PBD.
∵PA⊥平面ABCD,AD?平面ABCD,
∴PA⊥AD,又AD⊥AB,PA∩AB=A,
∴AD⊥平面PAB,又AD?平面PAD,
∴平面PAB⊥平面PAD.
綜上,共有7對平面互相垂直.
故選C.
點(diǎn)評 本題考查了線面垂直的性質(zhì)與判定,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(0,2) | B. | (-∞,-2)∪(2,+∞) | C. | (-2,0)∪(0,2) | D. | (-2,0)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | -2 | D. | log27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 周期為π的奇函數(shù) | B. | 周期為2π的奇函數(shù) | ||
C. | 周期為4π的奇函數(shù) | D. | 周期為4π的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{4}{e^2}$ | C. | $\frac{1}{2}$ | D. | $\frac{8}{e^2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com