精英家教網 > 高中數學 > 題目詳情
1.已知f(x)是定義在R上的偶函數,且T=4,當x∈(0,2)時,f(x)=log2(3x+1),則f(2015)=( 。
A.4B.2C.-2D.log27

分析 根據函數奇偶性和對稱性的性質進行轉化求解即可.

解答 解:∵R上的偶函數f(x)周期是4,
∴f(2015)=f(504×4-1)=f(-1)=f(1)=log2(3+1)=log24=2,
故選:B

點評 本題主要考查函數值的計算,根據函數奇偶性和函數的周期進行轉化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

18.已知a,b,c分別為△ABC的內角A,B,C的對邊,且滿足C=2A,cosA=$\frac{3}{4}$.
(1)求$\frac{c}{a}$及sinB的值;
(2)若△ABC周長為30,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.在三角形ABC中,則tan$\frac{A}{2}$tan$\frac{B}{2}$+tan$\frac{B}{2}$tan$\frac{C}{2}$+tan$\frac{A}{2}$tan$\frac{C}{2}$的值是1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.如圖,在正方體ABCD-A1B1C1D1中,棱長為a,E為棱CC1上的動點.
(1)求異面直線BD與A1E所成的角;
(2)確定E點的位置,使平面A1BD⊥平面BDE.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知函數y=ax-1(a>0,且a≠1)的圖象恒過定點A,若點A在一次函數y=mx+n的圖象上,其中m>0,n>0,則$\frac{1}{m}$+$\frac{4}{n}$的最小值為( 。
A.5B.7C.9D.13

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.設$f(x)=\left\{{\begin{array}{l}{1-{x^2},x≤1}\\{lnx,x>1}\end{array}}\right.$,若方程f(x)=kx-$\frac{1}{2}$恰有四個不相等的實數根,則實數k的取值范圍是( 。
A.$(\frac{1}{2},\frac{1}{{\sqrt{e}}}$)B.(2,e)C.($\sqrt{e}$,2)D.$(\frac{1}{2},\sqrt{e}$)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.如圖,已知四邊形ABCD是正方形,PA⊥平面ABCD,則圖中所有互相垂直的平面共有( 。
A.5對B.6對C.7對D.8對

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.集合A={x|0≤x<3且x∈Z}的子集共有8個.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知f(x)=$2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A、B、C的對邊分別為a,b,c,f(A)=2,a=$\sqrt{3}$,B=$\frac{π}{4}$,求b的值.

查看答案和解析>>

同步練習冊答案