【題目】依據(jù)黃河濟(jì)南段8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示:依據(jù)濟(jì)南的地質(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖(乙)所示.
(I)以此頻率作為概率,試估計(jì)黃河濟(jì)南段在8月份發(fā)生I級(jí)災(zāi)害的概率;
(Ⅱ)黃河濟(jì)南段某企業(yè),在3月份,若沒(méi)受1、2級(jí)災(zāi)害影響,利潤(rùn)為500萬(wàn)元;若受1級(jí)災(zāi)害影響,則虧損100萬(wàn)元;若受2級(jí)災(zāi)害影響則虧損1000萬(wàn)元.
現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:
試問(wèn),如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說(shuō)明理由.
【答案】 (I),因此企業(yè)應(yīng)選方案二.
【解析】
(I)依據(jù)甲圖,記黃河8月份“水位小于40米”為事件,“水位在40米至50米之間”為事件,“水位大于50米”為事件,分別求出它們發(fā)生的概率,記該地8月份“水位小于40米且發(fā)生1級(jí)災(zāi)害”為事件,“水位在40米至50米之間且發(fā)生1級(jí)災(zāi)害”為事件,“水位大于50米且發(fā)生1級(jí)災(zāi)害”為事件,分別求出它們發(fā)生的概率,再利用求解. (II)以企業(yè)利潤(rùn)為隨機(jī)變量,分別計(jì)算出三種方案的利潤(rùn),再選擇.
(I)依據(jù)甲圖,記黃河8月份“水位小于40米”為事件,“水位在40米至50米之間”為事件,“水位大于50米”為事件,它們發(fā)生的概率分別為:
,
.
記該地8月份“水位小于40米且發(fā)生1級(jí)災(zāi)害”為事件,“水位在40米至50米之間且發(fā)生1級(jí)災(zāi)害”為事件,“水位大于50米且發(fā)生1級(jí)災(zāi)害”為事件,
所以.
記“該黃河在8月份發(fā)生1級(jí)災(zāi)害”為事件.則
.
估計(jì)該河流在8月份發(fā)生1級(jí)災(zāi)害的概率為.
(II)以企業(yè)利潤(rùn)為隨機(jī)變量,
選擇方案一,則利潤(rùn)(萬(wàn)元)的取值為:,由(I)知
.
的分布列為
X1 | 500 | -100 | -1000 |
P | 0.81 | 0.155 | 0.035 |
則該企業(yè)在8月份的利潤(rùn)期望
(萬(wàn)元).
選擇方案二,則(萬(wàn)元)的取值為:,由(I)知,
,
的分布列為:
X2 | 460 | -1040 |
P | 0.965 | 0.035 |
則該企業(yè)在8月份的平均利潤(rùn)期望(萬(wàn)元)
選擇方案三,則該企業(yè)在8月份的利潤(rùn)為:(萬(wàn)元) 由于,因此企業(yè)應(yīng)選方案二.>
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn).為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
分?jǐn)?shù) | |||||
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 | 5 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)概率不超過(guò)0.025的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | |||
成績(jī)不優(yōu)良 | |||
總計(jì) |
附:,其中.
臨界值表
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
(2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若是的一個(gè)極值點(diǎn),求的值;
(2)討論的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)在的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(,且)是定義域?yàn)?/span>R的奇函數(shù).
(1)求t的值;
(2)若,求使不等式對(duì)一切恒成立的實(shí)數(shù)k的取值范圍;
(3)若函數(shù)的圖象過(guò)點(diǎn),是否存在正數(shù)m(),使函數(shù)在上的最大值為0,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)在定義域的某個(gè)區(qū)間上的值域恰為,則稱函數(shù)為上的等域函數(shù),稱為函數(shù)的一個(gè)等域區(qū)間.
(1)若函數(shù),,則函數(shù)存在等域區(qū)間嗎?若存在,試寫出其一個(gè)等域區(qū)間,若不存在,說(shuō)明理由
(2)已知函數(shù),其中且,,.
(。┊(dāng)時(shí),若函數(shù)是上的等域函數(shù),求的解析式;
(ⅱ)證明:當(dāng),時(shí),函數(shù)不存在等域區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】山東省于2015年設(shè)立了水下考古研究中心,以此推動(dòng)全省的水下考古、水下文化遺產(chǎn)保護(hù)等工作;水下考古研究中心工作站,分別設(shè)在位于劉公島的中國(guó)甲午戰(zhàn)爭(zhēng)博物院和威海市博物館。為對(duì)劉公島周邊海域水底情況進(jìn)行詳細(xì)了解,然后再選擇合適的時(shí)機(jī)下水探摸、打撈,省水下考古中心在一次水下考古活動(dòng)中,某一潛水員需潛水米到水底進(jìn)行考古作業(yè),其用氧量包含以下三個(gè)方面:
①下潛平均速度為米/分鐘,每分鐘的用氧量為升;
②水底作業(yè)時(shí)間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.4升;
③返回水面時(shí),平均速度為米/分鐘,每分鐘用氧量為0.32升.
潛水員在此次考古活動(dòng)中的總用氧量為升.
(Ⅰ)如果水底作業(yè)時(shí)間是分鐘,將表示為的函數(shù);
(Ⅱ)若,水底作業(yè)時(shí)間為20分鐘,求總用氧量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱長(zhǎng)為1的正方體中,點(diǎn)P是線段上的動(dòng)點(diǎn).當(dāng)在平面,平面,平面ABCD上的正投影都為三角形時(shí),將它們的面積分別記為,,.
(1)當(dāng)時(shí),________(用“>”或“=”或“<”填空);
(2)的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某網(wǎng)站的程序員中隨機(jī)抽取名統(tǒng)計(jì)其年齡數(shù)據(jù)如下表:
年齡 | 23 | 26 | 27 | 30 | 32 | 34 | 38 |
人數(shù) | 1 | 3 | 3 | 5 | 4 | 3 | 1 |
(1)求這名程序員的平均年齡及年齡的眾數(shù)、中位數(shù);
(2)若這名程序員中年齡不超過(guò)歲,且學(xué)歷是研究生及其以上有人,歲以上且學(xué)歷是本科及其以下有人,完成下面的列聯(lián)表,并判斷是否有%的把握認(rèn)為該網(wǎng)站程序員的學(xué)歷與年齡有關(guān).
年齡≤30 | 年齡>30 | |
學(xué)歷研究生及其以上 | ||
學(xué)歷本科及其以下 |
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com