17.(x+2y)(x-y)7展開式中,含x3y5項(xiàng)的系數(shù)是49.

分析 由(x+2y)(x-y)7=(x+2y)$[{x}^{7}-7{x}^{6}y+…+{∁}_{7}^{4}{x}^{3}(-y)^{4}+$${∁}_{7}^{5}{x}^{2}(-y)^{5}$+…].即可得出含x3y5項(xiàng)的系數(shù)是2${∁}_{7}^{4}$-${∁}_{7}^{5}$.

解答 解:(x+2y)(x-y)7=(x+2y)$[{x}^{7}-7{x}^{6}y+…+{∁}_{7}^{4}{x}^{3}(-y)^{4}+$${∁}_{7}^{5}{x}^{2}(-y)^{5}$+…].
含x3y5項(xiàng)的系數(shù)是2${∁}_{7}^{4}$-${∁}_{7}^{5}$=49.
故答案為:49.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.集合$M=\left\{{\left.x\right|x=\frac{n}{2}+1,n∈Z}\right\}$,$N=\left\{{\left.y\right|y=m+\frac{1}{2},m∈Z}\right\}$,則兩集合M,N的關(guān)系為( 。
A.M∩N=∅B.M=NC.M?ND.N?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=a-x2(1≤x≤2)與g(x)=x+2的圖象上存在關(guān)于x軸對稱的點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.[-2,0]B.[-$\frac{9}{4}$,0]C.[2,4]D.[-$\frac{9}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.關(guān)于函數(shù)f(x)=2cos2$\frac{x}{2}$+$\sqrt{3}$sinx(x∈[0,π])下列結(jié)論正確的是( 。
A.有最大值3,最小值-1B.有最大值2,最小值-2
C.有最大值3,最小值0D.有最大值2,最小值0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.《孫子算經(jīng)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五等諸侯,共分橘子六十顆,人別加三顆.問:五人各得幾何?”其意思為“有5個(gè)人分60個(gè)橘子,他們分得的橘子數(shù)成公差為3的等差數(shù)列,問5人各得多少橘子.”這個(gè)問題中,得到橘子最少的人所得的橘子個(gè)數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{a}{sinB}+\frac{sinA}=2c$,則A=( 。
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合$M=\left\{{x\left|{\frac{x-2}{x-3}<0}\right.}\right\},N=\left\{{x\left|{{{log}_{\frac{1}{2}}}(x-2)≥1}\right.}\right\}$,則M∩N=( 。
A.$[{\frac{5}{2},3})$B.$({2,\frac{5}{2}}]$C.$[{2,\frac{5}{2}}]$D.$({\frac{5}{2},3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BAD=135°,PA⊥底面ABCD,AB=AC=PA=1,E,F(xiàn)分別是BC,AD的中點(diǎn),點(diǎn)M在線段PD上.
(1)求證:平面PAC⊥平面EFM;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知${({{a_5}-1})^3}+3{a_5}=4$,${({{a_8}-1})^3}+3{a_8}=2$,則下列選項(xiàng)正確的是( 。
A.S12=12,a5>a8B.S12=24,a5>a8C.S12=12,a5<a8D.S12=24,a5<a8

查看答案和解析>>

同步練習(xí)冊答案