【題目】已知拋物線Cy2=axa0)上一點Pt, )到焦點F的距離為2t

(l)求拋物線C的方程;

(2)拋物線上一點A的縱坐標為1,過點Q(3,﹣1)的直線與拋物線C交于M,N兩個不同的點(均與點A不重合),設(shè)直線AM,AN的斜率分別為k1,k2,求證:k1×k2為定值.

【答案】(1);(2)證明見解析.

【解析】試題分析:(1)由拋物線的定義可知,可求拋物線的標準方程;(2)設(shè)過點的直線的方程為,即,代入利用韋達定理,結(jié)合斜率公式,化簡即可求的值.

試題解析:1由拋物線的定義可知,則,由點在拋物線上,則,,則,由,則,∴拋物線的方程.

2點在拋物線上,且,,,設(shè)過點的直線的方程為,即,代入,設(shè), ,則, ,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,不能證明APBC的條件是(  )

A. APPB,APPC

B. APPB,BCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為實數(shù),函數(shù)f(x)x2|xa|1x∈R.

(1)討論f(x)的奇偶性;

(2)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐PABCD的三視圖如圖所示,四棱錐PABCD的五個頂點都在一個球面上, EF分別是棱AB,CD的中點,直線EF被球面所截得的線段長為2 ,則該球的表面積為

A. 12π B. 24π C. 36π D. 48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (a為常數(shù))有兩個極值點.

(1)求實數(shù)a的取值范圍;

(2)設(shè)f(x)的兩個極值點分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處的切線與軸垂直,求的最大值;

(2)若對任意都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐SABCD中的底面是菱形,∠BAD=60°,SD⊥底面ABCD,SDAB=2,E、F分別為SB、CD的中點.

(Ⅰ)求證:EF∥平面SAD

(Ⅱ)點PSB上一點,若SB⊥平面APC,試確定點P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856306)

在△ABC中,內(nèi)角A,B,C的對邊分別為a,bc,已知,且b=5,acos C=-1.

(Ⅰ)求角A

(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為△ABC的重心,∠BOC=90°,若4BC2=AB·AC,則A的大小為________

查看答案和解析>>

同步練習(xí)冊答案