19.化簡:$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$,α∈(π,$\frac{3π}{2}$)

分析 二倍角公式和根式的性質(zhì)化簡即可

解答 解:∵α∈(π,$\frac{3π}{2}$),
∴$\frac{α}{2}$∈($\frac{π}{2}$,$\frac{3π}{4}$)
∴cosα<0,cos$\frac{α}{2}$<0
$\frac{1}{2}$+$\frac{1}{2}$cos2α=$\frac{1}{2}$+$\frac{1}{2}$(2cos2α-1)=cos2α,
∴$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=$\sqrt{\frac{1}{2}-\frac{1}{2}cosα}$=$\sqrt{co{s}^{2}\frac{α}{2}}$=-cos$\frac{α}{2}$

點(diǎn)評 本題考查了二倍角公式和根式的化簡,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果一個(gè)水平放置的圖形的斜二測直觀圖是一個(gè)底角為60°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是$\frac{{3\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人):
高校相關(guān)人數(shù)抽取人數(shù)
A18x
B362
C54y
(1)求表中的x和y;
(2)若從高校B,C抽取的人中選2人進(jìn)行專題發(fā)言,求這2人來自不同高校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓C的極坐標(biāo)方程為:ρ=2sinθ,則其圓心C的直角坐標(biāo)是( 。
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知平面α∥平面β,點(diǎn)A,B∈α,點(diǎn)C,D∈β,且AC∥BD,求證:AC=BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在邊長為2的菱形ABCD中,∠BAD=60°,若點(diǎn)E為AB邊上的動(dòng)點(diǎn),點(diǎn)F是AD邊上的動(dòng)點(diǎn),且$\overrightarrow{AE}$=λ$\overrightarrow{AB}$,$\overrightarrow{AF}$=(1-λ)$\overrightarrow{AD}$,0≤λ≤1,則$\overrightarrow{DE}$•$\overrightarrow{BF}$的最大值為$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,記不等式組$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{y≤2}\end{array}\right.$,所表示的平面區(qū)域?yàn)镈.在映射T:$\left\{\begin{array}{l}{u=x+y}\\{v=x-y}\end{array}\right.$的作用下,區(qū)域D內(nèi)的點(diǎn)(x,y)對應(yīng)的象為點(diǎn)(u,v),則由點(diǎn)(u,v)所形成的平面區(qū)域的面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lg(a-ax-x2).
(Ⅰ)若函數(shù)f(x)存在,求a的取值范圍.
(Ⅱ) 若f(x)在x∈(2,3)上有意義,求a的取值范圍.
(Ⅲ)若f(x)>0的解集為(2,3),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(2x-1)的定義域?yàn)椋?1,1],則函數(shù)f(log${\;}_{\frac{1}{2}}}$x)的定義域?yàn)閇$\frac{1}{2}$,8).

查看答案和解析>>

同步練習(xí)冊答案