已知f(x)=2ax-
b
x
+lnx在x=-1,x=
1
2
處取得極值.
(Ⅰ)求a,b的值;
(Ⅱ)x∈[
1
4
,4]時(shí),求f(x)的最小值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出導(dǎo)數(shù),由極值得,f′(-1)=0,f′(
1
2
)=0,解出a,b即可;
(Ⅱ)求出導(dǎo)數(shù),并分解成
1
x2
(2x-1)(x+1),求出單調(diào)區(qū)間,求出極值,判斷也為最值即可.
解答: 解:(Ⅰ)∵f(x)=2ax-
b
x
+lnx,
∴f′(x)=2a+
b
x2
+
1
x

∵f(x)在x=-1與x=
1
2
處取得極值,
∴f′(-1)=0,f′(
1
2
)=0,
即2a+b-1=0且2a+4b+2=0解得a=1,b=-1
∴所求a、b的值分別為1、-1.
(Ⅱ)由(1)得f′(x)=2-
1
x2
+
1
x
=
1
x2
(2x2+x-1)
=
1
x2
(2x-1)(x+1).
∴當(dāng)x∈[
1
4
,
1
2
]時(shí),f′(x)<0;當(dāng)x∈[
1
2
,4]時(shí),f′(x)>0,
∴f(
1
2
)是f(x)在[
1
4
,4]上的極小值.
又∵只有一個(gè)極小值,
∴f(x)min=f(
1
2
)=3-ln2.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的綜合應(yīng)用:求極值和最值,注意運(yùn)用在某個(gè)區(qū)間內(nèi)只有一個(gè)極值,一定為最值,本題屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)直線l將圓x2+y2-2x-4y=0平分,且與直線x+2y=0垂直,求直線l的方程;
(2)求以點(diǎn)(2,-1)為圓心且與直線x+y=6相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),P(x,y)為函數(shù)y=1+lnx圖象上一點(diǎn),記直線OP的斜率k=f(x).
(Ⅰ)若函數(shù)f(x)在區(qū)間(m,m+
1
2
)(m>0)上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)x≥1時(shí),不等式f(x)≥
t
x+1
恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3-2bx2+cx+4d(a、b、c、d∈R)圖象關(guān)于原點(diǎn)對(duì)稱,且當(dāng)x=1時(shí),f(x)取極小值-
2
3

(Ⅰ)求a、b、c、d的值;
(Ⅱ)若x1,x2∈[-1,1]時(shí),求證:|f(x1)-f(x2)|≤
4
3

(Ⅲ)當(dāng)x∈[-1,1]時(shí),圖象上是否存在兩點(diǎn),使得過此兩點(diǎn)處的切線互相垂直?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求與雙曲線
x2
16
-
y2
4
=1有公共焦點(diǎn),且過點(diǎn)(3
2
,2)的雙曲線的標(biāo)準(zhǔn)方程,并寫出其漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩
種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).如圖所示莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
(1)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀.請(qǐng)畫出下面的2×2列聯(lián)表.
(2)判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
甲班乙班合計(jì)
優(yōu)秀
不優(yōu)秀
合計(jì)
下面臨界值表僅供參考:
P(x2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定函數(shù)f(x)=x2+2x+1,編寫程序求任意給定x的值,求f(f(x))的值,并畫出相應(yīng)的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3+
3
2
(2a-1)x2-6x(a∈R)
(1)當(dāng)a=
1
3
時(shí),求f(x)的極大值和極小值;
(2)當(dāng)a>0時(shí),函數(shù)f(x)在區(qū)間(-2,3)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=y上一點(diǎn)到直線2x-y-4=0的距離最短的點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案