14.已知定義在R上的函數(shù)f(x)的對(duì)稱軸為x=-5,且當(dāng)x≥-5時(shí),f(x)=2x-3.若函數(shù)f(x)在區(qū)間(k,k+1)(k∈Z)上有零點(diǎn),則k的值為( 。
A.2或-11B.2或-12C.1或-12D.1或-11

分析 利用函數(shù)零點(diǎn)判定定理求出x≥-5時(shí)函數(shù)f(x)=2x-3的一個(gè)零點(diǎn)所在區(qū)間,再由對(duì)稱性求出另一個(gè)零點(diǎn)所在區(qū)間得答案.

解答 解:當(dāng)x≥-5時(shí),f(x)=2x-3,
∵f(1)=2-3=-1<0,f(2)=22-3=1>0,
由函數(shù)零點(diǎn)存在性定理,可得函數(shù)f(x)=2x-3有一個(gè)零點(diǎn)在(1,2)內(nèi),此時(shí)k=1;
又定義在R上的函數(shù)f(x)的對(duì)稱軸為x=-5,
由對(duì)稱性可知,函數(shù)f(x)=2x-3有另一個(gè)零點(diǎn)在(-12,-11)內(nèi),此時(shí)k=-12.
∴k的值為1或-12.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)判定定理,考查了由對(duì)稱性求對(duì)稱點(diǎn)的坐標(biāo)的方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在集合A上的函數(shù)f(x)=log2(x-1)+log2(2x+1),其值域?yàn)椋?∞,1],則A=$(1,\frac{3}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$),x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]且函數(shù)g(x)=2[f(x)]2-f(x)-m.
(1)當(dāng)m=0時(shí),求函數(shù)y=g(x)的零點(diǎn);
(2)當(dāng)m∈[-$\frac{1}{8}$,3],討論函數(shù)y=g(x)的零點(diǎn)個(gè)數(shù)及相應(yīng)零點(diǎn)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)直線l:(m-1)x+(2m+1)y+3m=0(m∈R)與圓(x-1)2+y2=r2(r>0)交于A,B兩點(diǎn),C為圓心,當(dāng)實(shí)數(shù)m變化時(shí),△ABC面積的最大值為4,則mr2=-4或-14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知四棱錐P-ABCD,底面ABCD為菱形,∠ABC=60°,△PAB是等邊三角形,AB=2,PC=$\sqrt{6}$
(1)證明:平面PAB⊥平面ABCD;
(2)求點(diǎn)D到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)=|x-1|+|x+1|,(x∈R)
(1)求證:f(x)≥2;
(2)若不等式f(x)≥$\frac{|2b+1|-|1-b|}{|b|}$對(duì)任意非零實(shí)數(shù)b恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=ax-lnx.
(1)討論f(x)單調(diào)性;
(2)當(dāng)a>0時(shí),已知f(x1)=f(x2),x1≠x2,求證:x1+x2>$\frac{2}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知:
2+$\frac{2}{3}$=4×$\frac{2}{3}$,
3+$\frac{3}{8}$=9×$\frac{3}{8}$,
4+$\frac{4}{15}$=16×$\frac{4}{15}$,
…,
觀察以上等式,若8+$\frac{8}{m}$=k×$\frac{8}{n}$(m,n,k均為實(shí)數(shù)),則m+k-n=64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.圖中的三角形稱為希爾賓斯基(Sierpinski)三角形.黑色的三角形個(gè)數(shù)依次構(gòu)成一個(gè)數(shù)列,則這個(gè)數(shù)列的一個(gè)通項(xiàng)公式是( 。
A.an=3n-1B.an=3nC.an=3n-2nD.an=3n-1+2n-3

查看答案和解析>>

同步練習(xí)冊答案