【題目】已知函數(shù).

(Ⅰ)若處相切,試求的表達(dá)式;

(Ⅱ)若上是減函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅲ)證明不等式:.

【答案】(1); (2);(3)見解析.

【解析】試題分析】(1)依據(jù)題設(shè)導(dǎo)數(shù)計(jì)算公式及導(dǎo)數(shù)的幾何意義建立方程求解;(2)依據(jù)題設(shè)條件構(gòu)造函數(shù)運(yùn)用導(dǎo)數(shù)建立不等式,分離參數(shù)借助基本不等式求得參數(shù)的取值范圍;(3)借助(2)的結(jié)論建立遞推式,然后運(yùn)用疊加的方法進(jìn)行分析推證

(Ⅰ)由于處相切,

,得:

又∵,∴,

.

(Ⅱ)上是減函數(shù),

上恒成立.

上恒成立,由,,

又∵,∴.

(Ⅲ)由(Ⅱ)可得:當(dāng)時(shí):上是減函數(shù),

∴當(dāng)時(shí),

所以從而得到:.

當(dāng)時(shí):,

當(dāng)時(shí):,

當(dāng)時(shí):

當(dāng)時(shí):,.

上述不等式相加得:

…+

…+.(,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2016高考北京文數(shù)】已知橢圓C:過(guò)點(diǎn)A(2,0),B(0,1)兩點(diǎn).

I)求橢圓C的方程及離心率;

(Ⅱ)設(shè)P為第三象限內(nèi)一點(diǎn)且在橢圓C上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), . 

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),討論函數(shù)單調(diào)性;

(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的 ,且,有恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對(duì)任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖幾何體中,矩形所在平面與梯形所在平面垂直,且, , , 的中點(diǎn).

(1)證明: 平面

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個(gè)不在軸上的動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的平行線交曲線, 兩個(gè)不同的點(diǎn).

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請(qǐng)說(shuō)明理由;

(Ⅲ)記的面積為 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.

(1)αβ,則sin αsin β

(2)若對(duì)角線相等,則梯形為等腰梯形;

(3)已知ab,cd都是實(shí)數(shù),若abcd,則acbd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:

I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;

II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足an+1= ,a1=1,n∈N*
(1)求a2 , a3 , a4的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案