16.已知$f(x)=2sin(ωx-\frac{π}{3})$,則“?x∈R,f(x+π)=f(x)”是“ω=2”的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 由ω=2,可得f(x)=2sin$(2x-\frac{π}{3})$,可得f(x+π)=f(x).反之不成立,例如ω=4也成立.即可判斷出結(jié)論.

解答 解:由ω=2,可得f(x)=2sin$(2x-\frac{π}{3})$,∴f(x+π)=f(x).
反之不成立,例如ω=4也成立.
∴“?x∈R,f(x+π)=f(x)”是“ω=2”的必要不充分條件.
故選:C.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$a=\sqrt{3}$,$b={125^{\frac{1}{6}}}$,$c={log_{\frac{1}{6}}}\frac{1}{7}$,則下列不等關(guān)系正確的是(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-1≥0}\\{x-3y+2≤0}\\{x+2y-8≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=(2-z)x+y的最大值為( 。
A.$\frac{3}{2}$B.2C.$\frac{7}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.袋中有外觀相同的紅球,黑球各1個,現(xiàn)依次有放回地隨機(jī)摸取3次,每次摸取1個球,若摸到紅球時得2分,摸到黑球時得1分,則3次摸球所得總分為5的概率為( 。
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A、B、C的對邊分別是a,b,c,若λsinA=sinB+sinC(λ∈R).
(Ⅰ)當(dāng)λ=3,且b=c時,求cosA的值;
(Ⅱ)當(dāng)A=60°時,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,若a=1,∠A=$\frac{π}{4}$,則$\frac{{\sqrt{2}b}}{sinC+cosC}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知一個由11人組成的評審委員會以投票方式從符合要求的甲,乙兩名候選人中選出一人參加一次活動.投票要求委員會每人只能選一人且不能棄選,每位委員投票不受他人影響.投票結(jié)果由一人唱票,一人統(tǒng)計投票結(jié)果.
(Ⅰ)設(shè):在唱到第k張票時,甲,乙兩人的得票數(shù)分別為xk,yk,N(k)=xk-yk,k=1,2,…,11.若下圖為根據(jù)一次唱票過程繪制的N(k)圖,
則根據(jù)所給圖表,在這次選舉中獲勝方是誰?y7的值為多少?圖中點P提供了什么投票信息?
(Ⅱ)設(shè)事件A為“候選人甲比乙恰多3票勝出”,假定每人選甲或乙的概率皆為$\frac{1}{2}$,則事件A發(fā)生的概率為多少?
(Ⅲ)若在不了解唱票過程的情況下已知候選人甲比乙3票勝出.則在唱票過程中出現(xiàn)甲乙兩人得票數(shù)相同情況的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線y2=2px(p>0)的準(zhǔn)線為l,若l與圓x2+y2+6x+5=0的交點為A,B,且|AB|=2$\sqrt{3}$.則p的值為4或8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.把函數(shù)f(x)=cos(2x+φ)的圖象上所有的點向左平移$\frac{π}{6}$個單位長度后得到y(tǒng)=g(x)的圖象,若y=g(x)的一個對稱中心是($\frac{π}{6}$,0),則φ的一個可能取值是( 。
A.$\frac{π}{3}$B.$\frac{7π}{12}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊答案