20.集合A={x|x2-4=0}的子集個數(shù)( 。
A.0B.1C.2D.4

分析 解方程求出集合A,從而求出A的子集的個數(shù).

解答 解:由x2-4=0,解得:x=±2,
故A={-2,2},故子集的個數(shù)是22=4個,
故選:D.

點評 本題考查了集合的子集問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.設向量$\vec a=({x,x-1}),\vec b=({1,2})$,且$\vec a∥\vec b$,則$\vec a•\vec b$=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.中石化集團獲得了某地深海油田區(qū)塊的開采權,集團在該地區(qū)隨機初步勘探了部分兒口井,取得了地質資料.進入全面勘探時期后,集團按網(wǎng)絡點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見如表:
井號I123456
坐標(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;
(Ⅱ)現(xiàn)準備勘探新井7(1,25),若通過1、3、5、7號井計算出的$\widehatb,\widehata$的值($\widehatb,\widehata$精確到0.01)相比于(Ⅰ)中b,a的值之差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?
(參考公式和計算結果:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x•\overline y}}{{\sum_{i=1}^n{{x^2}_i}-n{{\overline x}^2}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x^2}_{2i-1}=94,}\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}$)
(Ⅲ)設出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質井的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知P是橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$上任意一點,過橢圓的右頂點A和上頂點B分別作x軸和y軸的垂線,兩垂線交于點C,過P作AC,BC的平行線交BC于點M,交AC于點N,交AB于點D,E,矩形PMCN的面積是S1,三角形PDE的面積是S2,則$\frac{{2{S_1}}}{S_2}$=(  )
A.2B.1C.$\frac{8}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若復數(shù)(a2-l)+(a-1)i(i為虛數(shù)單位)是純虛數(shù),則實數(shù)a=( 。
A.±1B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.不等式($\frac{1}{2}$-x)($\frac{1}{3}$-x)>0的解集是( 。
A.{x|$\frac{1}{3}$<x<$\frac{1}{2}$}B.{x|x>$\frac{1}{2}$}C.{x|x<$\frac{1}{3}$}D.{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,$\overrightarrow{AB}=(2,4)$,$\overrightarrow{AC}=(1,3)$,則$\overrightarrow{CB}$=(  )
A.(3,7)B.(3,5)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}前n項和為Sn,且Sn=2an-(n-1)q-1,其中n∈N*,q為常數(shù).
(Ⅰ)當q=0時,求數(shù)列{an}的通項公式;
(Ⅱ)當q>1時,對任意n∈N*,且n≥2,證明:$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+$\frac{1}{1+{a}_{3}}$+…+$\frac{1}{1+{a}_{n}}$<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{3{a}_{n}}{{a}_{n}+3}$,求a2、a3、a4的值,由此猜想數(shù)列{an}的通項公式,并證明你的猜想.

查看答案和解析>>

同步練習冊答案