12.在等差數(shù)列{an}中,已知a1+a2=5,a4+a5=23,則該數(shù)列的前10項(xiàng)的和S10=145.

分析 利用等差數(shù)列的通項(xiàng)公式先求出首面和公差,由此能求出該數(shù)列的前10項(xiàng)的和.

解答 解:∵在等差數(shù)列{an}中,a1+a2=5,a4+a5=23,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}+d=5}\\{{a}_{1}+3d+{a}_{1}+4d=23}\end{array}\right.$,
解得a1=1,d=3,
∴${S}_{10}=10×1+\frac{10×9}{2}×3$=145.
故答案為:145.

點(diǎn)評(píng) 本題考查等差數(shù)列的前10項(xiàng)的和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C1:y2=2px(p>0)與雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0.b>0)有公共焦點(diǎn)F,且在第一象限的交點(diǎn)為P(3,2$\sqrt{6}$).
(1)求拋物線C1,雙曲線C2的方程;
(2)過點(diǎn)F且互相垂直的兩動(dòng)直線被拋物線C1截得的弦分別為AB,CD,弦AB、CD的中點(diǎn)分別為G、H,探究直線GH是否過定點(diǎn),若GH過定點(diǎn),求出定點(diǎn)坐標(biāo);若直線GH不過定點(diǎn),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學(xué)生中,用分層抽樣的方法選取28人參加一項(xiàng)活動(dòng),則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.2016年微信用戶數(shù)量統(tǒng)計(jì)顯示,微信注冊(cè)用戶數(shù)量已經(jīng)突破9.27億.微信用戶平均年齡只有26歲,97.7%的用戶在50歲以下,86.2%的用戶在18-36歲之間.為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從北京市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量頻數(shù)頻率
0至5個(gè)00
6至10個(gè)300.3
11至15個(gè)300.3
16至20個(gè)ac
20個(gè)以上5b
合計(jì)1001
(Ⅰ)求a,b,c的值;
(Ⅱ)若從這100位同學(xué)中隨機(jī)抽取2人,求這2人中恰有1人微信群個(gè)數(shù)超過15個(gè)的概率;
(Ⅲ)以這100個(gè)人的樣本數(shù)據(jù)估計(jì)北京市的總體數(shù)據(jù)且以頻率估計(jì)概率,若從全市大學(xué)生中隨機(jī)抽取3人,記X表示抽到的是微信群個(gè)數(shù)超過15個(gè)的人數(shù),求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題“?x>0,x2-2x+1<0”的否定是( 。
A.?x<0,x2-2x+1≥0B.?x≤0,x2-2x+1>0C.?x>0,x2-2x+1≥0D.?x>0,x2-2x+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)焦點(diǎn)為F1(-$\sqrt{3}$,0),M(1,y)(y>0)為橢圓上的一點(diǎn),△MOF1的面積為$\frac{3}{4}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)T在圓x2+y2=1上,是否存在過點(diǎn) A(2,0)的直線l交橢圓C于點(diǎn) B,使$\overrightarrow{{O}{T}}$=$\frac{{\sqrt{5}}}{5}$(${\overrightarrow{{O}{A}}$+$\overrightarrow{{O}{B}}}$)?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={1,2,3,4},B={0,2,4,6},則A∩B等于( 。
A.{0,1,2,3,4,6}B.{1,3}C.{2,4}D.{0,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,則13+23+33+43+53+63=212

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知AB是單位圓O上的一條弦,λ∈R,若$|{\overrightarrow{OA}-λ\overrightarrow{OB}}|$的最小值是$\frac{{\sqrt{3}}}{2}$,則|AB|=1或$\sqrt{3}$,此時(shí)λ=$±\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案