4.給出以下命題:
(1)在回歸直線方程$\widehat{y}$=0.5x-85中,變量x=200時(shí),變量$\widehat{y}$的值一定是15;
(2)根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計(jì)算得出X2=7.469,而P(X2>6.635)≈0.01,則有99%的把握認(rèn)為兩個(gè)事件有關(guān);
(3)若不等式|x+1|-|x-1|>k有解,則k的取值范圍是k≤-2;
(4)隨機(jī)變量ζ滿足正態(tài)分布N(0,1),若P(|ξ|≤1.96)=0.950,則P(ξ<-1.96)=0.05.
其中正確的命題是(2)(將正確的序號(hào)都填上)

分析 (1),在回歸直線y=0.5x-85中,y的值是一個(gè)估算值;
(2),由P(X2>6.635)≈0.01,可判斷有99%的把握認(rèn)為兩個(gè)事件有關(guān);
(3),由-2≤|x+1|-|x-1|≤2,則k的取值范圍是k<2
(4),正態(tài)分布曲線關(guān)于直線x=0對(duì)稱,則P(ξ<-1.96)=(1-0.95)×$\frac{1}{2}$

解答 解:對(duì)于(1),在回歸直線y=0.5x-85中,變量x=200時(shí),變量y的值大約是15,這是一個(gè)估算值,故錯(cuò)誤.
對(duì)于(2),根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計(jì)算得出X2=7.469,而P(X2>6.635)≈0.01,則有99%的把握認(rèn)為兩個(gè)事件有關(guān),故正確;
對(duì)于(3),∵-2≤|x+1|-|x-1|≤2,∴若不等式|x+1|-|x-1|>k有解,則k的取值范圍是k<2,故錯(cuò);
對(duì)于(4),機(jī)變量ζ滿足正態(tài)分布N(0,1),則正態(tài)分布曲線關(guān)于直線x=0對(duì)稱,若P(|ξ|≤1.96)=0.950,則P(ξ<-1.96)=(1-0.95)×$\frac{1}{2}$.故錯(cuò).
故答案為:(2)

點(diǎn)評(píng) 題考查了回歸直線的性質(zhì)、獨(dú)立性檢驗(yàn)的基本思想,絕對(duì)值不等式、正態(tài)分布,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若對(duì)于任意實(shí)數(shù)x,有f(x)>f′(x),且y=f(x)-2為奇函數(shù),則不等式f(x)<2ex的解集為( 。
A.(-∞,0)B.(0,+∞)C.(-∞,e2D.(e2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,則a0+a8=(  )
A.664B.844C.968D.1204

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$+1(a∈R),f(ln(log25))=5,則f(ln(log52))=( 。
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線與橢圓x2+$\frac{{y}^{2}}{2}$=1有公共焦點(diǎn),且雙曲線的離心率為$\sqrt{5}$,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±$\frac{2\sqrt{5}}{5}$C.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z=$\frac{-4+i}{-i}$的共軛復(fù)數(shù)是(  )
A.-1+4iB.-1-4iC.1+4iD.1-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在斜三棱柱ABC-A′B′C′中,AC=BC=A′A=A′C,A′在底面ABC上的射影為AB的中點(diǎn)D,E為線段BC的中點(diǎn).
(1)證明:平面A′DE⊥平面BCC′B′;
(2)求二面角D-B′C-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)復(fù)數(shù)z=1-i,則$\frac{-3+4i}{z+1}$=( 。
A.-2+iB.2+iC.-1+2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B=$\frac{π}{4}$,△ABC的面積為9,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案