15.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,則a0+a8=( 。
A.664B.844C.968D.1204

分析 利用二項(xiàng)式定理將等式左邊化為1-x為一項(xiàng)的二項(xiàng)式,對1-x賦值求系數(shù).

解答 解:由已知已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$=[2-(1-x)]10,則a0=210=1024,a8=${C}_{10}^{8}={C}_{10}^{2}$×22=180,所以則a0+a8=1204;
故選D.

點(diǎn)評 本題考查了二項(xiàng)式定理的運(yùn)用;熟記定理并且正確變形是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知A,B分別是射線CM,CM(不含端點(diǎn)C)上運(yùn)動,在△ABC中,角A,B,C所對的邊分別為a,b,c.
(1)若∠MCN=$\frac{2π}{3}$,a,b,c依次成等差數(shù)列,且公差為2,求c的值;
(2)若∠MCN=$\frac{π}{3},c=\sqrt{3}$,∠ABC=θ,求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}中,a1=2,an+1=$\frac{2}{{a}_{n}+1}$,設(shè)bn=$\frac{{a}_{n}-1}{{a}_{n}+2}$n∈N*
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)的和為Sn,求證:bnSn≤$\frac{1}{16}$(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}+tcosα\\ y=tsinα\end{array}\right.(t為參數(shù),0<α<π)$,曲線C的極坐標(biāo)方程為$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線A與曲線C相交于A,B兩點(diǎn),已知定點(diǎn)P($\frac{1}{2}$,0),當(dāng)α=$\frac{π}{3}$時,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是( 。
A.16B.32C.$\frac{64}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,拋物線C:x2=2py(p>0)的準(zhǔn)線為y=-1,取過焦點(diǎn)F且平行于x軸的直線與拋物線交于不同的兩點(diǎn)P1,P2,過P1,P2作圓心為Q的圓,使拋物線上其余點(diǎn)均在圓外,且∠P1QP2=90°.
(1)求拋物線C和圓Q的方程;
2)過點(diǎn)F作直線l與拋物線C和圓Q依次交于M,A,B,N,求|MN|•|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義域?yàn)镽的函數(shù)f(x)滿足f(x+3)=2f(x),當(dāng)x∈[-1,2)時,f(x)=$\left\{{\begin{array}{l}{{x^2}+x,x∈[-1,0)}\\{-{{(\frac{1}{2})}^{|x-1|}},x∈[0,2)}\end{array}}$.
若存在x∈[-4,-1),使得不等式t2-3t≥4f(x)成立,則實(shí)數(shù)t的取值范圍是(-∞,1]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出以下命題:
(1)在回歸直線方程$\widehat{y}$=0.5x-85中,變量x=200時,變量$\widehat{y}$的值一定是15;
(2)根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計算得出X2=7.469,而P(X2>6.635)≈0.01,則有99%的把握認(rèn)為兩個事件有關(guān);
(3)若不等式|x+1|-|x-1|>k有解,則k的取值范圍是k≤-2;
(4)隨機(jī)變量ζ滿足正態(tài)分布N(0,1),若P(|ξ|≤1.96)=0.950,則P(ξ<-1.96)=0.05.
其中正確的命題是(2)(將正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{x-1}{x+1}$(x>0)的值域是(-1,1).

查看答案和解析>>

同步練習(xí)冊答案