17.若(x2+ax+1)6(a>0)的展開式中x2的系數(shù)是66,則實數(shù)a的值為( 。
A.4B.3C.2D.l

分析 根據(jù)(x2+ax+1)6=[1+(x2+ax)]6,利用展開式的通項公式求出展開式中x2的系數(shù),列出方程,即可求出a的值

解答 解:(x2+ax+1)6=[1+(x2+ax)]6
展開式的通項公式為:
Tr+1=${∁}_{6}^{r}$•(x2+ax)r=${∁}_{6}^{r}$•xr•(x+a)r,r=0、1、2、…、6;
當r=1時,x2的系數(shù)是${∁}_{6}^{1}$=6,
當r=2時,x2的系數(shù)是${∁}_{6}^{2}$•a2=15a2,
所以6+15a2=66,
解得a=2.
故選C.

點評 本題考查了二項式展開式的應用問題,也考查了方程思想的應用問題,是基礎題目

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓C:x2+(y-1)2=5,直線l過定點P(1,1).
(1)求圓心C到直線l距離最大時的直線l的方程;
(2)若l與圓C交與不同兩點A、B,求弦AB的中點M的軌跡方程;
(3)若l與圓C交與不同兩點A、B,點P分弦AB為$\frac{AP}{PB}=\frac{1}{2}$,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知某小學有90名三年級學生,將全體三年級學生隨機按00~89編號,并且編號順序平均分成9組,現(xiàn)要從中抽取9名學生,各組內抽取的編號按依次增加10進行系統(tǒng)抽樣.
(1)若抽出的一個號碼為30,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學生的號碼;
(2)分別統(tǒng)計這9名學生的數(shù)學成績,獲得成績數(shù)據(jù)的莖葉圖如圖所示,從這9名學生中隨機抽取兩名成績不低于73分的學生,求被抽取到的兩名學生的成績之和不小于154分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.桌面上有一些相距4cm的平行線,把一枚半徑為1cm的硬幣任意擲在這個桌面上,則硬幣與任一條平行線都不相交的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知條件p:x2-3x-4≤0;條件q:x2-6x+9-m2≤0,若p是q的充分不必要條件,則實數(shù)m的取值范圍是(-∞,-4]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設F1、F2分別為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,若雙曲線的右支上存在一點P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,且△F1PF2的三邊長構成等差數(shù)列,則此雙曲線的漸近線方程為y=±2$\sqrt{6}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若復數(shù)a+$\frac{10}{a+i}$是純虛數(shù),則實數(shù)a的值是( 。
A.1B.-1C.3D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,已知斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面$ABC,∠ABC=90°,BC=2,AC=2\sqrt{3}$,且AA1⊥A1C,AA1=A1C,求側面A1ABB1與底面ABC所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知角α終邊上一點P(-$\sqrt{3}$,m),且sinα=$\frac{{\sqrt{2}m}}{4}$,則cosα=-$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

同步練習冊答案