5.求下列直線的一個法向量、一個方向向量和斜率k(如果斜率存在的話)
(1)x-3y+5=0;
(2)y=3x+7;
(3)2x+5=0;
(4)4y+1=0.

分析 根據直線的方程求出對應的斜率與以及直線方向向量、法向量

解答 解:(1)x-3y+5=0中,
一個方向向量為$\overrightarrowg6e64ge$=(3,1),一個法向量為$\overrightarrow{n}$=(-1,3),斜率為k=$\frac{1}{3}$,
(2)在直線y=3x-7中,
一個方向向量為$\overrightarrowaccaegi$=(1,3),一個法向量為$\overrightarrow{n}$=(-3,1),斜率為k=3
(3)直線2x+5=0中,
一個方向向量為$\overrightarrowcg44g6a$=(0,1),一個法向量為$\overrightarrow{n}$=(1,0),斜率為不存在
(4)直線4y+1=0中,
一個方向向量為$\overrightarrow6wsoomm$=(1,0),一個法向量為$\overrightarrow{n}$=(0,1),斜率為k=0

點評 本題考查了直線的斜率與傾斜角以及直線方向向量、法向量的計算問題,直線在坐標軸上的截距問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知不等式組$\left\{\begin{array}{l}{y≤5}&{\;}\\{2x-y+3≤0}&{\;}\\{x+y-1≥0}&{\;}\end{array}\right.$表示的平面區(qū)域為D,若?(x,y)∈D,|x|+2y≤a為真命題,則實數(shù)a的取值范圍是( 。
A.[10,+∞)B.[11,+∞)C.[13,+∞)D.[14,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.$cos(-\frac{19π}{6})$的值為.(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+cosx,當0≤x<π時,f(x)=-1,則f($\frac{2017π}{3}$)=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某地農業(yè)監(jiān)測部門統(tǒng)計發(fā)現(xiàn):該地區(qū)近幾年的生豬收購價格每四個月會重復出現(xiàn),但生豬養(yǎng)殖成本逐月遞增.下表是今年前四個月的統(tǒng)計情況:
月份1月份2月份3月份4月份
收購價格(元/斤)6765
養(yǎng)殖成本(元/斤)344.65
現(xiàn)打算從以下兩個函數(shù)模型:
①y=Asin(ωx+φ)+B,(A>0,ω>0,-π<φ<π),
②y=log2(x+a)+b
中選擇適當?shù)暮瘮?shù)模型,分別來擬合今年生豬收購價格(元/斤)與相應月份之間的函數(shù)關系、養(yǎng)殖成本(元/斤)與相應月份之間的函數(shù)關系.
(1)請你選擇適當?shù)暮瘮?shù)模型,分別求出這兩個函數(shù)解析式;
(2)按照你選定的函數(shù)模型,幫助該部門分析一下,今年該地區(qū)生豬養(yǎng)殖戶在8月和9月有沒有可能虧損?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知等比數(shù)列{an}中,an+1=36,an+3=m,an+5=4,則圓錐曲線$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{3}$=1的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{5}$或$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.過點P(2,-1)且傾斜角為$\frac{π}{4}$的直線方程是( 。
A.x-y+1=0B.$\sqrt{2}$x-2y-$\sqrt{2}$-2=0C.x-y-3=0D.$\sqrt{2}$x-2y+$\sqrt{2}$+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若cos($\frac{π}{2}+α$)=$\frac{3}{5}$,則cos2α=(  )
A.$-\frac{7}{25}$B.$\frac{7}{25}$C.一$\frac{16}{25}$D.$\frac{16}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知矩形ABCD的周長為18,把它沿圖中的虛線折成正六棱柱,當這個正六棱柱的體積最大時,它的外接球的表面積為( 。
A.13πB.12πC.11πD.10π

查看答案和解析>>

同步練習冊答案