6.已知圓C經(jīng)過(guò)點(diǎn)A(0,2),B(2,0),圓C的圓心在圓x2+y2=2的內(nèi)部,且直線3x+4y+5=0被圓C所截得的弦長(zhǎng)為2$\sqrt{3}$,點(diǎn)P為圓C上異于A、B的任意一點(diǎn),直線PA與x軸交于點(diǎn)M,直線PB與y軸交于點(diǎn)N.
(1)求圓C的方程;
(2)求證:|AN|•|BM|為定值;
(3)當(dāng)$\overrightarrow{PA}$•$\overrightarrow{PB}$取得最大值時(shí),求|MN|.

分析 (1)直線3x+4y+5=0被圓C所截得的弦長(zhǎng)為2$\sqrt{3}$,且r=$\sqrt{{a}^{2}+(a-2)^{2}}$,C(a,a)到直線3x+4y+5=0的距離d=$\frac{|7a+5|}{5}$=$\sqrt{{r}^{2}-3}$=$\sqrt{2{a}^{2}-4a+1}$,即可求圓C的方程;
(2)分類討論,求出直線PA,PB的方程,可得M,N的坐標(biāo),即可證明結(jié)論;
(3)利用向量的數(shù)量積公式,結(jié)合三角函數(shù)知識(shí),求出M,N的坐標(biāo),即可得出結(jié)論.

解答 (1)解:知點(diǎn)C在線段AB的中垂線y=x上,故可設(shè)C(a,a),圓C的半徑為r.
∵直線3x+4y+5=0被圓C所截得的弦長(zhǎng)為2$\sqrt{3}$,且r=$\sqrt{{a}^{2}+(a-2)^{2}}$,
∴C(a,a)到直線3x+4y+5=0的距離d=$\frac{|7a+5|}{5}$=$\sqrt{{r}^{2}-3}$=$\sqrt{2{a}^{2}-4a+1}$,
∴a=0,或a=170.
又圓C的圓心在圓x2+y2=2的內(nèi)部,∴a=0,圓C的方程x2+y2=4.
(2)證明:當(dāng)直線PA的斜率不存在時(shí),|AN|•|BM|=8.
當(dāng)直線PA與直線PB的斜率存在時(shí),
設(shè)P(x0,y0),直線PA的方程為y=$\frac{{y}_{0}-2}{{x}_{0}}$x+2,令y=0得M($\frac{2{x}_{0}}{2-{y}_{0}}$,0).
直線PB的方程為y=$\frac{{y}_{0}}{{x}_{0}-2}$(x-2),令x=0得N(0,$\frac{2{y}_{0}}{2-{x}_{0}}$).
∴|AN|•|BM|=(2-$\frac{2{y}_{0}}{2-{x}_{0}}$)(2-$\frac{2{x}_{0}}{2-{y}_{0}}$)=4+4×$\frac{4-2{y}_{0}-2{x}_{0}+{x}_{0}{y}_{0}}{4-2{y}_{0}-2{x}_{0}+{x}_{0}{y}_{0}}$=8,
故|AN|•|BM|為定值為8;
(3)解:$\overrightarrow{PA}$•$\overrightarrow{PB}$=(-x0,2-y0)•(2-x0,-y0)=x02+y02-2x0-2y0=4-2(x0+y0),
設(shè)P(2cosα,2sinα),則$\overrightarrow{PA}$•$\overrightarrow{PB}$=4-4$\sqrt{2}$sin(α+45°),
∴sin(α+45°)=-1時(shí)$\overrightarrow{PA}$•$\overrightarrow{PB}$取得最大值4+4$\sqrt{2}$,此時(shí)x0=-$\sqrt{2}$,y0=-$\sqrt{2}$,
∴M(-2$\sqrt{2}$+2,0),N(0,-2$\sqrt{2}$+2),
∴|MN|=4-2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查圓的方程,考查直線的方程,考查直線與圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知冪函數(shù)y=f(x)的圖象過(guò)點(diǎn)$(2\;,\;\;\sqrt{2})$,則$f({\frac{1}{3}})$的值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{3}$C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=|x+1|+|x+m|.
(1)若函數(shù)f(x)的最小值為2,求m的值;
(2)當(dāng)x∈[-1,1]時(shí),不等式f(x)≤2x+3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.i是虛數(shù)單位,復(fù)數(shù)z滿足條件|z-i|=|3-4i|,則|z|的最大值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.A是曲線ρ=3cosθ上任意一點(diǎn),點(diǎn)A到直線ρcosθ=-1距離的最大值為(  )
A.$\frac{5}{2}$B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某工廠甲、乙、丙、丁四個(gè)車間生產(chǎn)了同一種產(chǎn)品共計(jì)2800件,現(xiàn)要用分層抽樣的方法從中抽取140件進(jìn)行質(zhì)量檢測(cè),且甲、丙兩個(gè)車間共抽取的產(chǎn)品數(shù)量為60,則乙、丁兩車間生產(chǎn)的產(chǎn)品總共有( 。
A.1000件B.1200件C.1400件D.1600件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四邊形ABCD是正方形,且平面ABCD⊥平面ABEG,F(xiàn)是AG上一點(diǎn),且△ABE與△AEF都是等腰直角三角形,AB=AE,AF=EF.
(1)求證:EF⊥平面BCE;
 (2)設(shè)線段CD,AE的中點(diǎn)分別為P,M,求三棱錐M-BDP和三棱錐F-BCE的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知:函數(shù)f(x)=$\sqrt{4-x}$+lg(3x-9)的定義域?yàn)榧螦,集合B={x|(x-a)[x-(a+3)]<0},
(1)若A⊆B,求實(shí)數(shù)a的取值范圍;
(2)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.計(jì)算:
(Ⅰ)(-$\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+${(0.002)^{-\frac{1}{2}}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0

(Ⅱ)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案