【題目】某單位舉辦2010年上海世博會知識宣傳活動,進行現(xiàn)場抽獎,
盒中裝有9張大小相同的精美卡片,卡片上分別印有“世博會會徽” 或“海寶”(世博會吉祥物)圖案;抽獎規(guī)則是:參加者從盒中抽取卡片兩張,若抽到兩張都是“海寶”卡
即可獲獎,否則,均為不獲獎.卡片用后放回盒子,下一位參加者繼續(xù)重復(fù)進行.
(1)活動開始后,一位參加者問:盒中有幾張“海寶”卡?主持人答:我只知道,
從盒中抽取兩張都是“世博會會徽“卡的概率是,求抽獎?wù)攉@獎的概率;
(2)現(xiàn)有甲、乙、丙、丁四人依次抽獎,用表示獲獎的人數(shù),求的分布列及的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在學(xué)期結(jié)束,為了解家長對學(xué)校工作的滿意度,對兩個班的100位家長進行滿意度調(diào)查,調(diào)查結(jié)果如下:
非常滿意 | 滿意 | 合計 | |
A | 30 | 15 | 45 |
B | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
(1)根據(jù)表格判斷是否有的把握認為家長的滿意程度與所在班級有關(guān)系?
(2)用分層抽樣的方法從非常滿意的家長中抽取5人進行問卷調(diào)查,并在這5人中隨機選出2人進行座談,求這2人都來自同一班級的概率?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式|x﹣1|+|2x+1|<3的解集為{x|a<x<b};
(1)求a,b的值;
(2)若正實數(shù)x,y滿足x+y=ab+2且不等式(yc2﹣4)x+(8cx﹣1)y≤0對任意的x,y恒成立,求實數(shù)c的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面是直角梯形,,,且.點是線段上一點,且.
(1)求證:平面平面.
(2)若,在線段上是否存在一點,使得到平面的距離為?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲市有萬名高三學(xué)生參加了天一大聯(lián)考,根據(jù)學(xué)生數(shù)學(xué)成績(滿分:分)的大數(shù)據(jù)分析可知,本次數(shù)學(xué)成績服從正態(tài)分布,即,且,.
(1)求的值.
(2)現(xiàn)從甲市參加此次聯(lián)考的高三學(xué)生中,隨機抽取名學(xué)生進行問卷調(diào)查,其中數(shù)學(xué)成績高于分的人數(shù)為,求.
(3)與甲市相鄰的乙市也有萬名高三學(xué)生參加了此次聯(lián)考,且其數(shù)學(xué)成績服從正態(tài)分布.某高校規(guī)定此次聯(lián)考數(shù)學(xué)成績高于分的學(xué)生可參加自主招生考試,則甲和乙哪個城市能夠參加自主招生考試的學(xué)生更多?
附:若隨機變量,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是由個有序?qū)崝?shù)構(gòu)成的一個數(shù)組,記作:.其中稱為數(shù)組的“元”,稱為的下標(biāo),如果數(shù)組中的每個“元”都是來自數(shù)組中不同下標(biāo)的“元”,則稱為的子數(shù)組.定義兩個數(shù)組,的關(guān)系數(shù)為.
(1)若,,設(shè)是的含有兩個“元”的子數(shù)組,求的最大值;
(2)若,,且,為的含有三個“元”的子數(shù)組,求的最大值;
(3)若數(shù)組中的“元”滿足,設(shè)數(shù)組含有四個“元”,且,求與的所有含有三個“元”的子數(shù)組的關(guān)系數(shù)()的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣4x2+5x﹣4.
(1)求曲線f(x)在點(2,f(2))處的切線方程:
(2)若g(x)=f(x)+k,求g(x)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=xlnx-a有兩個零點,則實數(shù)a的取值范圍為( )
A.[0,)B.(0,)
C.(0,]D.(-,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com