16. 某家電公司銷售部門共有200位銷售員,每位部門對(duì)每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間[2,22](單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對(duì)應(yīng)的區(qū)間分別為[2,6),[6,10),[10,14),[14,18),[18,22],繪制出頻率分布直方圖.
(1)求a的值,并計(jì)算完成年度任務(wù)的人數(shù);
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);
(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎(jiǎng)勵(lì)海南三亞三日游,求獲得此獎(jiǎng)勵(lì)的2位銷售員在同一組的概率.

分析 (1)根據(jù)頻率直方圖即可求出a的值,
(2)求出各組的人數(shù)比,即可求出各組的人數(shù),
(2)求出從這6人中隨機(jī)抽取2人的情況總數(shù),及兩人來自同組的情況數(shù),代入概率公式,可得答案.

解答 解:(1)2a=0.25-(0.02+0.08+0.09),解得a=0.03,
完成完成年度任務(wù)的人數(shù)200×4×(0.03+0.03)=48人,
(2)這5組的人數(shù)比為0.02:0.08:0.09:0.03:0.03=2:8:9:3:3,
故這5組分別應(yīng)抽取的人數(shù)為2,8,9,3,3人
(3)設(shè)第四組的4人用a,b,c表示,第5組的3人用A,B,C表示,
從中隨機(jī)抽取2人的所有情況如下ab,ac,aA,aB,aC,bc,bA,bB,bC,cA,cB,cC,AB,AC,BC共15種,其中在同一組的有ab,ac,bc,AB,AC,BC共6種,
故獲得此獎(jiǎng)勵(lì)的2位銷售員在同一組的概率$\frac{6}{15}$=$\frac{2}{5}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是頻率分布直方圖,古典概型,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.以下式子正確的個(gè)數(shù)是( 。
①($\frac{1}{x}$)′=$\frac{1}{{x}^{2}}$  ②(cosx)′=-sinx   ③(2x)′=2xln2  ④(lgx)′=$\frac{-1}{xln10}$.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥底面ABCD,AB⊥AC,AB=1,BC=2,PA=$\frac{\sqrt{2}}{2}$,E為BC的中點(diǎn).
(1)證明:PE⊥ED;
(2)求二面角E-PD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.兩座燈塔A和B與海洋觀察站C的距離分別為10km和20km,燈塔A在觀察站C的北偏東15°方向上,燈塔B在觀察站C的南偏西75°方向上,則燈塔A與燈塔B的距離為(  )
A.10$\sqrt{5}$kmB.10$\sqrt{7}$kmC.10$\sqrt{3}$kmD.30km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列說法:①分類變量A與B的隨機(jī)變量k2越大,說明“A與B有關(guān)系”的可信度越大②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=2,$\overline x=1$,$\overline y=3$,則a=1.正確的有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)y=f(x)的圖象上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長到原來的2倍,再將整個(gè)圖象沿x軸向右平移$\frac{π}{2}$個(gè)單位,沿y軸向下平移1個(gè)單位,得到函數(shù)y=$\frac{1}{2}$sinx的圖象,則y=f(x)的解析式為( 。
A.y=$\frac{1}{2}$sin(2x+$\frac{π}{2}$)+1B.y=$\frac{1}{2}$sin(2x-$\frac{π}{2}$)+1C.y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$)+1D.y=$\frac{1}{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i是虛數(shù)單位,復(fù)數(shù)z=(4+i)+(-3-2i)的虛部是( 。
A.1B.$\sqrt{2}$C.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=x2+$\frac{a}{x}$,則“a<2”是“函數(shù)f(x)在(1,+∞)上為增函數(shù)”的( 。
A.充分而不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在四面體P-ABC中,PA=PB=PC=BC=1,則該四面體體積的最大值為$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案