18.計(jì)算:
(1)(-3)×4$\overrightarrow a$;
(2)$3(\overrightarrow a+\overrightarrow b)-2(\overrightarrow a-\overrightarrow b)-\overrightarrow a$
(3)$(2\overrightarrow a+3\overrightarrow b-\overrightarrow c)-(3\overrightarrow a-2\overrightarrow b+\overrightarrow c)$
(4)$\frac{1}{12}[{2({2\overrightarrow a+8\overrightarrow b})-4({4\overrightarrow a-2\overrightarrow b})}]$.

分析 根據(jù)向量的加減運(yùn)算和數(shù)乘運(yùn)算計(jì)算即可.

解答 解:(1))(-3)×4$\overrightarrow a$=-12 $\overrightarrow a$…(3分)
(2)$3(\overrightarrow a+\overrightarrow b)-2(\overrightarrow a-\overrightarrow b)-\overrightarrow a$=$5\overrightarrow b$…(3分)
(3)$3(\overrightarrow a+\overrightarrow b)-2(\overrightarrow a-\overrightarrow b)-\overrightarrow a$=$-\overrightarrow a+5\overrightarrow b$)…(3分)
(4)$3(\overrightarrow a+\overrightarrow b)-2(\overrightarrow a-\overrightarrow b)-\overrightarrow a$=$-\overrightarrow a+2\overrightarrow b$…(3分)

點(diǎn)評(píng) 本題主要考查向量的加減運(yùn)算和向量的數(shù)乘運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)y=x2+bx+c的單調(diào)減區(qū)間是(-∞,1],則( 。
A.b≤-2B.b≤-1C.b=-1D.b=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.用二分法求函數(shù)f(x)=-x3-3x+5的零點(diǎn)取的初始區(qū)間可以是( 。
A.(1,2)B.(-2,0)C.(0,1)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知命題p:指數(shù)函數(shù)f(x)=(2a-6)x在R上單調(diào)遞減,命題q:關(guān)于x的方程x2-3ax+2a2+1=0的兩個(gè)相異實(shí)根均大于3.若p、q中有且僅有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為a(a∈R),且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)對(duì)n∈N*,試比較$\frac{1}{a_2}+\frac{1}{{a_{2^2}^{\;}}}+\frac{1}{{a_{2^3}^{\;}}}+…+\frac{1}{{a_{2^n}^{\;}}}$與$\frac{1}{a_1}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)向量$\overrightarrow{a}$=(4,1),$\overrightarrow$=(1,-cosθ),若$\overrightarrow{a}$∥$\overrightarrow$,則cosθ=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,在三棱錐DABC中,若AB=CB,AD=CD,E是AC的中點(diǎn),則下列命題中正確的有③(寫(xiě)出全部正確命題的序號(hào)).
①平面ABC⊥平面ABD;
②平面ABD⊥平面BCD;
③平面ABC⊥平面BDE,且平面ACD⊥平面BDE;
④平面ABC⊥平面ACD,且平面ACD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.閱讀程序:若INPUT語(yǔ)句中輸入m,n的數(shù)據(jù)分別是72,168,則程序運(yùn)行的結(jié)果為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)f(θ)=$\frac{2co{s}^{2}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2co{s}^{2}(π+θ)+cos(-θ)}$,則f($\frac{π}{3}$)的值為( 。
A.-$\frac{5}{12}$B.$\frac{1}{2}$C.1D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案