精英家教網 > 高中數學 > 題目詳情

【題目】【2017廣東佛山二!磕潮kU公司針對企業(yè)職工推出一款意外險產品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、三類工種,根據歷史數據統(tǒng)計出三類工種的每賠付頻率如下表并以此估計賠付概率.

根據規(guī)定,該產品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;

某企業(yè)共有職工20000人,從事三類工種的人數分布比例如圖,老板準備為全體職工每人購買一份此種保險,并以中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

【答案】見解析;元.

【解析】試題分析:I設工種每份保單的保費,則需賠付時,收入為,根據概率分布可計算出保費的期望值為,令解得.同理可求得工種保費的期望值;II按照每個工種的人數計算出份數然后乘以1得到的期望值,即為總的利潤.

試題解析:

設工種的每份保單保費為元,設保險公司每單的收益為隨機變量,則的分布列為

保險公司期望收益為

根據規(guī)則

解得元,

設工種的每份保單保費為元,賠付金期望值為元,則保險公司期望利潤為元,根據規(guī)則,解得元,

設工種的每份保單保費為元,賠付金期望值為元,則保險公司期望利潤為元,根據規(guī)則,解得元.

購買類產品的份數為份,

購買類產品的份數為份,

購買類產品的份數為份,

企業(yè)支付的總保費為元,

保險公司在這宗交易中的期望利潤為元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點P是曲線C: ﹣y2=1上的任意一點,直線l:x=2與雙曲線C的漸近線交于A,B兩點,若 ,(λ,μ∈R,O為坐標原點),則下列不等式恒成立的是(
A.λ22
B.λ22≥2
C.λ22
D.λ22≤2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各組函數表示相同函數的是(
A.f(x)= ,g(x)=( 2
B.f(x)=1,g(x)=x2
C.f(x)= ,g(t)=|t|
D.f(x)=x+1,g(x)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且﹣1≤f(﹣1)≤2,2≤f(1)≤4,求點(a,b)的集合表示的平面區(qū)域的面積;
(2)若t=2+ ,(x<1且x≠0),求函數f(x)的最大值;
(3)若t=x﹣a﹣3(a∈R),不等式b2+c2﹣bc﹣3b﹣1≤f(x)≤a+4(b,c∈R)的解集為[﹣1,5],求b,c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017福建三明5月質檢】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側的動點,且滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中正確的是(
A. 的最小值是2
B. 的最小值是2
C. 的最小值是
D. 的最大值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017江西上饒聯考】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為

1及基地的預期收益;

2若該基地額外聘請工人,可在周一當天完成全部采摘任務,若周一無雨時收益為萬元,有雨時收益為萬元,且額外聘請工人的成本為元,問該基地是否應該額外聘請工人,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017重慶二診】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人男、女各20人,記錄了他們某一天的走路步數,并將數據整理如下:

1已知某人一天的走路步數超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據題意完成下面的列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

附:,

010

005

0025

0010

2706

3841

5024

6635

2若小王以這40位好友該日走路步數的頻率分布來估計其所有微信好友每日走路步數的概率分布,現從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn=n2 , {bn}為等比數列,且a1=b1 , b2(a2﹣a1)=b1
(1)求數列{an},{bn}的通項公式.
(2)設cn=anbn , 求數列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案