2.在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}-\overrightarrow{AC}|=8$,則△ABC的面積的最大值為( 。
A.8B.16C.$10\sqrt{3}$D.$8\sqrt{6}$

分析 根據(jù)平面向量的數(shù)量積公式和余弦定理,求出b2+c2=80,再利用基本不等式得出bc的最大值,寫出△ABC的面積,求其最大值即可.

解答 解:△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}-\overrightarrow{AC}|=8$,
設A、B、C所對邊分別為a,b,c,
則c•b•cosA=a=8①;
所以△ABC的面積為:
S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc$\sqrt{1{-cos}^{2}A}$=$\frac{1}{2}$bc$\sqrt{1-\frac{64}{{^{2}c}^{2}}}$=$\frac{1}{2}$$\sqrt{{^{2}c}^{2}-64}$,
由余弦定理可得b2+c2-2bc•cosA=a2=64②,
由①②消掉cosA得b2+c2=80,
所以b2+c2≥2bc,
bc≤40,當且僅當b=c=2$\sqrt{10}$時取等號,
所以S△ABC=$\frac{1}{2}$$\sqrt{{^{2}c}^{2}-64}$≤$\frac{1}{2}$$\sqrt{{40}^{2}-64}$=8$\sqrt{6}$,
所以△ABC面積的最大值為8$\sqrt{6}$.
故選:D.

點評 本題考查了平面向量數(shù)量積的運算、三角形面積公式以及基本不等式的應用問題,是綜合題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1上的兩個不同的動點(包括端點A1,C1).給出以下四個結(jié)論:
①存在P,Q兩點,使BP⊥DQ;
②存在P,Q兩點,使BP,DQ與直線B1C都成45°的角;
③若PQ=1,則四面體BDPQ的體積一定是定值;
④若PQ=1,則四面體BDPQ在該正方體六個面上的正投影的面積之和為定值.
以上各結(jié)論中,正確結(jié)論的是①③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在三棱錐P-ABC中,PA⊥底面ABC,AD⊥平面PBC,其垂足D落在直線PB上.
(Ⅰ)求證:BC⊥PB;
(Ⅱ)若AD=$\sqrt{3}$,AB=BC=2,Q為AC的中點,求PA的長度以及二面角Q-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)+\sqrt{3}tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)$的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC的中點,PO⊥平面ABCD,M為PD的中點.
(Ⅰ)證明:PB∥平面ACM;  
(Ⅱ)求證:BC⊥PA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若$tan({\frac{π}{4}-α})=3$,則tanα等于( 。
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右頂點為A,離心率為e,且橢圓C過點$E({2e,\frac{2}})$,以AE為直徑的圓恰好經(jīng)過橢圓的右焦點.
(1)求橢圓C的標準方程;
(2)已知動直線l(直線l不過原點且斜率存在)與橢圓C交于P,Q兩個不同的點,且△OPQ的面積S=1,若N為線段PQ的中點,問:在x軸上是否存在兩個定點E1,E2,使得直線NE1與NE2的斜率之積為定值?若存在,求出E1,E2的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若實數(shù)a,b,c∈(0,1)且10a+9b=9,a+b+c=1,則當$\frac{10}{a}+\frac{1}{9b}$取最小值時,c的值為( 。
A.$\frac{5}{11}$B.$\frac{2}{11}$C.$\frac{1}{11}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知當x≥0時,函數(shù)y=x2與函數(shù)y=2x的圖象如圖所示,則當x≤0時,不等式2x•x2≥1的解集是[-4,-2].

查看答案和解析>>

同步練習冊答案