A. | $\frac{5}{11}$ | B. | $\frac{2}{11}$ | C. | $\frac{1}{11}$ | D. | 0 |
分析 實數(shù)a,b,c∈(0,1),10a+9b=9,可得$\frac{10}{a}+\frac{1}{9b}$=$\frac{1}{9}$(10a+9b)$(\frac{10}{a}+\frac{1}{9b})$=$\frac{1}{9}$(101+$\frac{90b}{a}+\frac{10a}{9b}$),利用基本不等式的性質(zhì)可得最小值,可得取最小值時的a,b,即可得出c.
解答 解:實數(shù)a,b,c∈(0,1),10a+9b=9,
則$\frac{10}{a}+\frac{1}{9b}$=$\frac{1}{9}$(10a+9b)$(\frac{10}{a}+\frac{1}{9b})$=$\frac{1}{9}$(101+$\frac{90b}{a}+\frac{10a}{9b}$)≥$\frac{1}{9}$$(101+10×2×\sqrt{\frac{9b}{a}×\frac{a}{9b}})$=$\frac{121}{9}$,
當(dāng)且僅當(dāng)a=9b=$\frac{9}{11}$時取等號.
∴c=1-$\frac{9}{11}$-$\frac{1}{11}$=$\frac{1}{11}$.
故選:C.
點評 本題考查了基本不等式的性質(zhì)、方程的解法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p是假命題;¬p:?x∈R,log3(3x+1)>0 | B. | p是假命題;¬p:?x∈R,log3(3x+1)≤0 | ||
C. | p是真命題;¬p:?x∈R,log3(3x+1)>0 | D. | p是真命題;¬p:?x∈R,log3(3x+1)≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 16 | C. | $10\sqrt{3}$ | D. | $8\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{32}{3}$π | C. | $\frac{8}{3}$π | D. | 24π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -37 | B. | -29 | C. | -5 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “至少有一個黑球”與“都是黑球” | |
B. | “至少有一個黑球”與“至少有一個紅球” | |
C. | “恰好有一個黑球”與“恰好有兩個黑球” | |
D. | “至少有一個黑球”與“都是紅球” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com