Processing math: 100%
16.已知服從正態(tài)分布N(μ,σ2)的隨機(jī)變量,在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)內(nèi)取值的概率分別為68.27%,95.45%和99.73%,某中學(xué)為10000名員工定制校服,設(shè)學(xué)生的身高(單位:cm)服從正態(tài)分布N(173,25),則適合身高在158~188cm范圍內(nèi)學(xué)生穿的校服大約要定制9973套.

分析 判斷均值和標(biāo)準(zhǔn)差,根據(jù)所給數(shù)據(jù)得出身高在158~188cm范圍內(nèi)學(xué)生人數(shù).

解答 解:設(shè)學(xué)生身高為ξ,則ξ~N(173,25),
∴μ=173,σ=5,
∴P(158<ξ<188)=99.73%,
∴適合身高在158~188cm范圍內(nèi)學(xué)生穿的校服大約要定制10000×99.73%=9973套.
故答案為:9973.

點(diǎn)評(píng) 本題考查了正態(tài)分布的特點(diǎn),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知等邊△ABC的邊長(zhǎng)為2,點(diǎn)E、F分別在邊CA、BA上且滿足BEBC=2BFBC=3,則BECF=-34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.有四個(gè)命題
①若p=xa+yb,則pab共面
②若pab共面,則p=xa+yb
③若MN=xMA+YMB,則M、N、A、B四點(diǎn)共面
④若M、N、A、B四點(diǎn)共面,則MN=xMA+YMB
其中真命題的個(gè)數(shù)是( �。�
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分“優(yōu)秀”“合格”“尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并做出頻數(shù)統(tǒng)計(jì)表如下:
表一:男生的測(cè)評(píng)結(jié)果
等級(jí)優(yōu)秀合格尚待改進(jìn)
頻數(shù)15x5
表二:女生的測(cè)評(píng)結(jié)果
等級(jí)優(yōu)秀合格尚待改進(jìn)
頻數(shù)153y
(1)根據(jù)題意求表一和表二中的x和y的值;并由表中統(tǒng)計(jì)數(shù)據(jù)寫(xiě)下面的2×2列聯(lián)表;
 男生女生合計(jì)
優(yōu)秀   
非優(yōu)秀   
合計(jì)   
(2)根據(jù)所填的列聯(lián)表判斷是否有95%的把握認(rèn)為“測(cè)評(píng)結(jié)果是否優(yōu)秀與性別有關(guān)”.
參考公式:K2=nadbc2a+bc+da+cb+d(其中n=a+b+c+d)
參考數(shù)據(jù):
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.觀察數(shù)表:
1234…第一行
2345…第二行
3456…第三行
4567…第四行
第一列第二列第三列第四列
根據(jù)數(shù)表中所反映的規(guī)律,第n+1行與第m列的交叉點(diǎn)上的數(shù)應(yīng)該是m+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若A=π3,B=π4且a=3,則b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積為( �。�
A.2+πB.2+4πC.6+πD.6+4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=6-x3,g(x)=ex-1,則這兩個(gè)函數(shù)的導(dǎo)函數(shù)分別為( �。�
A.f′(x)=6-3x2,g′(x)=exB.f′(x)=-3x2,g′(x)=ex-1
C.f′(x)=-3x2,g′(x)=exD.f′(x)=6-3x2,g′(x)=ex-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)f(x)是定義在R上的偶函數(shù),F(xiàn)(x)=(x+2)3f(x+2)-17,G(x)=-17x+33x+2,若F(x)的圖象與G(x)的圖象的交點(diǎn)分別為(x1,y1),(x2,y2),…(xm,ym),則mi=1(xi+yi)=-19m.

查看答案和解析>>

同步練習(xí)冊(cè)答案
关 闭