A. | a<b<c | B. | a>b>c | C. | b<a<c | D. | b>a>c |
分析 構(gòu)造函數(shù)g(x),求出g(x)的奇偶性和單調(diào)性,根據(jù)函數(shù)單調(diào)性的性質(zhì)判斷a,b,c的大小即可.
解答 解:令g(x)=$\frac{f(x)}{x}$(x≠0),則g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
因?yàn)楫?dāng)x<0時(shí)f′(x)<$\frac{f(x)}{x}$恒成立,
所以當(dāng)x<0時(shí)xf′(x)-f(x)>0,
即當(dāng)x<0時(shí)g′(x)>0,所以g(x)在(-∞,0)上單調(diào)遞增,
又因?yàn)閒(-x)=f(x),
所以g(-x)=$\frac{f(-x)}{-x}$=-$\frac{f(x)}{x}$=-g(x),即g(x)是奇函數(shù),
所以g(x)在(0,+∞)單調(diào)遞增,
又因?yàn)閙+1>2$\sqrt{m}$>$\frac{4m}{m+1}$,
所以g(m+1)>g(2$\sqrt{m}$)>g($\frac{4m}{m+1}$),
所以$\frac{f(m+1)}{m+1}$>$\frac{f(2\sqrt{m})}{2\sqrt{m}}$>$\frac{f(\frac{4m}{m+1})}{\frac{4m}{m+1}}$,即a>b>c,
故選:B.
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性和單調(diào)性問題,構(gòu)造函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 8+2$\sqrt{3}$ | C. | 12+2$\sqrt{3}$ | D. | 12+4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)成績(jī) | 65 | 68 | 72 | 79 | 81 | 88 | 92 | 95 |
物理成績(jī) | 72 | 77 | 80 | 84 | 86 | 90 | 93 | 98 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com