分析 (1)將函數(shù)f(x)化簡為y=Asin(ωx+φ)的形式,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的取值最大值,可得m的值.
(2)利用周期公式求函數(shù)的最小正周期,最后將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;
解答 解:(1)函數(shù)f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+$\sqrt{3}$cos2x-m,x∈R,
化簡得:f(x)=sin2x+$\sqrt{3}$cos2x-m,
=2sin(2x+$\frac{π}{3}$)-m.
∵f(x)的最大值為1.即2-m=1,
解得:m=1.
(2)由(1)可得f(x)=2sin(2x+$\frac{π}{3}$)-1.
最小正周期T=$\frac{2π}{ω}=\frac{2π}{2}=π$,
∵正弦函數(shù)的單調(diào)增區(qū)間為[2kπ$-\frac{π}{2}$,2kπ$+\frac{π}{2}$],(k∈Z)
可得:2kπ$-\frac{π}{2}$≤2x+$\frac{π}{3}$2kπ$+\frac{π}{2}$,
解得:kπ$-\frac{5π}{12}$≤x≤kπ$+\frac{π}{12}$.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ$-\frac{5π}{12}$,kπ$+\frac{π}{12}$](k∈Z).
點評 本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | [4,+∞) | C. | (-∞,-1]∪[4,+∞) | D. | (-1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {-1} | C. | {1,2} | D. | {-1,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com