分析 (1)an=Sn-Sn-1=(An2+Bn)-[A(n-1)2+B(n-1)]=2an-A.a(chǎn)2-a1=(4A-A)-(2A-A)=2A.?dāng)?shù)列{an}的公差為2A的等差數(shù)列.
(2)利用公式an=$\left\{\begin{array}{l}{{a}_{1}(n=1)}\\{{S}_{n}-{S}_{n-1}(n≥2)}\end{array}\right.$進(jìn)行討論,然后綜合可得an的通項(xiàng)公式,從而證出數(shù)列{an}是公比為q等比數(shù)列.
解答 (1)證明:由Sn=An2+Bn(A,B是常數(shù))知,
an=Sn-Sn-1=(An2+Bn)-[A(n-1)2+B(n-1)]
=(an2+bn)-(an2-2an+A+bn-B)=2an-A+B.
∴a2-a1=(4A-A)-(2A-A)=2A.
∴數(shù)列{an}是等差數(shù)列;
(2)n=1時(shí),a1=S1=a,
n≥2時(shí),an=Sn-Sn-1=$\frac{a}{1-q}$(qn-qn-1)=aqn-1
∵n=1時(shí),a1=a=aq1-1也符合
∴an=aqn-1(n∈N+),可得$\frac{{a}_{n+1}}{{a}_{n}}$=q,即數(shù)列{an}是公比為q等比數(shù)列.
點(diǎn)評(píng) 本題考查數(shù)列的性質(zhì)和應(yīng)用,解題要認(rèn)真審題,仔細(xì)解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 30 | C. | 32 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com