11.已知$P({\sqrt{3},\frac{1}{2}})$在橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上,F(xiàn)為右焦點(diǎn),PF⊥垂直于x軸,A,B,C,D為橢圓上的四個(gè)動(dòng)點(diǎn),且AC,BD交于原點(diǎn)O.
(1)求橢圓C的方程;
(2)判斷直線l:$\frac{m+n}{2}x+({m-n})y=\frac{{\sqrt{3}+1}}{2}m+\frac{{\sqrt{3}-1}}{2}n({m,n∈R})$與橢圓的位置關(guān)系;
(3)設(shè)A(x1,y1),B(x2,y2)滿足$\frac{{y}_{1}{y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$,判斷kAB+kBC的值是否為定值,若是,請(qǐng)求出此定值,并求出四邊形ABCD面積的最大值,否則說(shuō)明理由.

分析 (1)由PF⊥垂直于x軸,則c=$\sqrt{3}$,$\frac{^{2}}{a}$=$\frac{1}{2}$,及a2=b2+c2,即可求得a和b的值,即可求得橢圓方程;
(2)將直線方程化簡(jiǎn),即可求得$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=\frac{1}{2}}\end{array}\right.$,則動(dòng)直線l恒過(guò)P點(diǎn),直線l與橢圓的位置關(guān)系是相切或相交;
(3)由$\frac{{y}_{1}{y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$,則4y1y2=x1x2,當(dāng)直線AB的斜率存在且不為0時(shí),設(shè)直線方程為y=kx+m,代入橢圓方程,利用韋達(dá)定理及4y1y2=x1x2,求得k,把三角形AOB的面積化為關(guān)于m的函數(shù),利用基本不等式求其最值,進(jìn)一步得到四邊形ABCD面積的最大值.

解答 解:(1)由題意可知:PF⊥垂直于x軸,則c=$\sqrt{3}$,$\frac{^{2}}{a}$=$\frac{1}{2}$,
∴$\frac{{a}^{2}-{c}^{2}}{a}$=$\frac{{a}^{2}-3}{a}$=$\frac{1}{2}$,
解得:a=2,b=1,
∴橢圓的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)將直線l:$\frac{m+n}{2}x+({m-n})y=\frac{{\sqrt{3}+1}}{2}m+\frac{{\sqrt{3}-1}}{2}n({m,n∈R})$,轉(zhuǎn)化成($\frac{x}{2}$+y-$\frac{\sqrt{3}+1}{2}$)m+($\frac{x}{2}$-y-$\frac{\sqrt{3}-1}{2}$)n=0,
由m,n∈R,則$\left\{\begin{array}{l}{\frac{x}{2}+y=\frac{\sqrt{3}+1}{2}}\\{\frac{x}{2}-y=\frac{\sqrt{3}-1}{2}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=\frac{1}{2}}\end{array}\right.$,
∴動(dòng)直線l恒過(guò)P點(diǎn),
由P在橢圓上,
∴直線l與橢圓的位置關(guān)系是相切或相交;
(3)∵$\frac{{y}_{1}{y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$,則4y1y2=x1x2,
若直線AB的斜率不存在(或AB的斜率為0時(shí)),不滿足4y1y2=x1x2;
直線AB的斜率存在且不為0時(shí),設(shè)直線方程為y=kx+m,A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,得(1+4k2)x2+8kmx+4(m2-1)=0.
△=(8km)2-4(1+4k2)(4m2-4)=16(4k2-m2+1)>0,①
x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4({m}^{2}-1)}{1+4{k}^{2}}$,
∵4y1y2=x1x2,又y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,
∴(4k2-1)x1x2+4km(x1+x2)+4m2=0,
即(4k2-1)×$\frac{4({m}^{2}-1)}{1+4{k}^{2}}$+4km(-$\frac{8km}{1+4{k}^{2}}$)+4m2=0.
整理得:k=±$\frac{1}{2}$.
∵A、B、C、D的位置可以輪換,∴AB、BC的斜率一個(gè)是$\frac{1}{2}$,另一個(gè)就是-$\frac{1}{2}$.
∴kAB+kBC=$\frac{1}{2}$-$\frac{1}{2}$=0,是定值.
不妨設(shè)kAB=-$\frac{1}{2}$,則x1+x2=2m,x1x2=2(m2-1).
設(shè)原點(diǎn)到直線AB的距離為d,則S△AOB=$\frac{1}{2}$|AB|•d=$\frac{1}{2}$|x1-x2|•$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$=$\frac{丨m丨}{2}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{丨m丨}{2}$$\sqrt{4{m}^{2}-4×2({m}^{2}-1)}$=$\sqrt{{m}^{2}(2-{m}^{2})}$≤1.
當(dāng)m2=1時(shí)滿足①取等號(hào).
∴S四邊形ABCD=4S△AOB≤4,即四邊形ABCD面積的最大值為4.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,考查韋達(dá)定理的應(yīng)用,考查基本不等式求最值,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,下列說(shuō)法正確的有( 。﹤(gè)
①函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{5π}{12}$對(duì)稱
②函數(shù)f(x)在$[-\frac{π}{3},0]$上單調(diào)遞增
③函數(shù)f(x)的圖象關(guān)于點(diǎn)$(-\frac{2π}{3},0)$對(duì)稱
④將函數(shù)y=2sin2x的圖象向左平移$\frac{π}{3}$個(gè)單位得到f(x)的圖象.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)點(diǎn)P在面積為2的正△ABC內(nèi)部運(yùn)動(dòng),若動(dòng)點(diǎn)P使得△PBC,△PAB,△PAC的面積都不大于1,則動(dòng)點(diǎn)P的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.甲、乙、丙三人投擲飛鏢,他們的成績(jī)(環(huán)數(shù))如下面的頻數(shù)條統(tǒng)計(jì)圖所示.則甲、乙、丙三人的訓(xùn)練成績(jī)方差S2,S2,S2的大小關(guān)系是S2<S2<S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{4}$=1,點(diǎn)P(3$\sqrt{2}$,$\sqrt{2}$)在橢圓C上,直線l:y=$\frac{1}{3}$x+t(t≠0)與橢圓C交于A,B兩點(diǎn).
(1)證明:直線PA的斜率與直線PB的斜率之和為定值;
(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,AB∥CD,CD⊥AC,過(guò)CD的平面分別與PA,PB交于點(diǎn)E,F(xiàn).
(1)求證:CD⊥平面PAC;
(2)求證:AB∥EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=($\sqrt{3}$tanx+1)cos2x.
(1)若α∈($\frac{π}{2}$,π),且cosα=-$\frac{\sqrt{5}}{5}$,求f(α)的值;
(2)討論函數(shù)f(x)在x≥$\frac{π}{4}$,且x≤$\frac{3π}{4}$范圍內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知曲線C1:y=ex與曲線C2:y=(x+a)2.若兩個(gè)曲線在交點(diǎn)處有相同的切線,則實(shí)數(shù)a的值為2-ln4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)x>0,集合$M=\left\{{{x^2},{{log}_4}x}\right\},N=\left\{{{2^x},a}\right\}$,若M∩N={1},則M∪N=( 。
A.{0,1,2,4}B.{0,1,2}C.{1,4}D.{0,1,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案