A. | (4,+∞) | B. | (-∞,0)∪(4,+∞) | C. | (0,4) | D. | (-∞,0) |
分析 若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{x}^{2}-2ax+2a,x≥0}\end{array}\right.$的圖象上恰好有兩對關(guān)于原點對稱的點,則當(dāng)x>0時,x2-2ax+2a=-(-x)2即x2-ax+a有兩個解,解得實數(shù)a的取值范圍.
解答 解:若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{x}^{2}-2ax+2a,x≥0}\end{array}\right.$的圖象上恰好有兩對關(guān)于原點對稱的點,
則當(dāng)x>0時,x2-2ax+2a=-(-x)2即x2-ax+a有兩個解,
所以$\left\{\begin{array}{l}△={a}^{2}-4a>0\\ \frac{a}{2}>0\\ a>0\end{array}\right.$,
解得a∈(4,+∞).
故選:A.
點評 本題考查的知識點是分段函數(shù)的應(yīng)用,二次函數(shù)的圖象和性質(zhì),轉(zhuǎn)化思想,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com