10.如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于P.設(shè)EF與BD交于點(diǎn)O,過點(diǎn)P作PH⊥BD,垂足為H.
(Ⅰ)求證:PH⊥底面BFDE;
(Ⅱ)若四棱錐P-BFDE的體積為12,求正方形ABCD的邊長.

分析 (Ⅰ)推導(dǎo)出PD⊥PF,PD⊥PE,則PD⊥平面PEF,從而平面PBD⊥平面BFDE,由此能證明PH⊥底面BFDE.
(Ⅱ)設(shè)正方形ABCD的邊長為x,推導(dǎo)出PO⊥PD,從而PH=$\frac{x}{3}$,由四棱錐P-BFDE的體積為12,求出正方形ABCD的邊長為6.

解答 證明:(Ⅰ)由正方形ABCD知,∠DCF=∠DAE=90°,EF∥AC,BD⊥AC,EF⊥BD,
∵點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn).將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于P.
∴PD⊥PF,PD⊥PE,
∵PE∩PF=P,PE、PF⊆平面PEF.
∴PD⊥平面PEF.
又∵EF?平面PEF,
∴PD⊥EF,又BD∩PD=D,
∴EF⊥平面PBD,
又EF?平面BFDE,∴平面PBD⊥平面BFDE.
∵平面PBD∩平面BFDE=BD,過點(diǎn)P作PH⊥BD,垂足為H,
∴PH⊥底面BFDE.
解:(Ⅱ)設(shè)正方形ABCD的邊長為x,
則PD=x,PE=PF=$\frac{1}{2}x$,DB=$\sqrt{2}x$,DE=DF=$\frac{\sqrt{5}}{2}x$,EF=$\frac{\sqrt{2}}{2}x$,∠BPD=90°,
PO=$\sqrt{P{F}^{2}-O{F}^{2}}$=$\sqrt{\frac{1}{4}{x}^{2}-\frac{1}{8}{x}^{2}}$=$\frac{\sqrt{2}}{4}$x,OD=$\sqrt{\frac{5}{4}{x}^{2}-\frac{1}{8}{x}^{2}}$=$\frac{3\sqrt{2}}{4}$x,
∴PO2+PD2=OD2,∴PO⊥PD,
∴$\frac{1}{2}×OD×PH=\frac{1}{2}×OP×PD$,
∴PH=$\frac{OP×PD}{OD}$=$\frac{\frac{\sqrt{2}x}{4}×x}{\frac{3\sqrt{2}}{4}x}$=$\frac{x}{3}$,
∵四棱錐P-BFDE的體積為12,
∴VP-BFDE=$\frac{1}{3}×{S}_{四邊形BFDE}×PH$=$\frac{1}{3}×\frac{1}{2}×BD×EF×PH$=$\frac{1}{6}×\sqrt{2}x×\frac{\sqrt{2}}{2}x×\frac{x}{3}$=12,
解得x=6.
∴正方形ABCD的邊長為6.

點(diǎn)評 本題考查線面垂直的證明,考查正方形邊長的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=Asin(wx+φ)+B(A>0,w>0,|φ|<\frac{π}{2})$的 部分圖象如圖所示:
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間和對稱中心坐標(biāo);
(3)將f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,在將橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)y=g(x)在$x∈[0,\frac{7π}{6}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四邊形ABCD為菱形,四邊形ACEF為平行四邊形,設(shè)BD與AC相交于點(diǎn)G,AB=BD=2,AE=$\sqrt{3}$,∠EAD=∠EAB.
(1)證明:平面ACEF⊥平面ABCD;
(2)若AE與平面ABCD所成角為60°,求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知長方形ABCD中,AB=2AD,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若$\overrightarrow{DE}$=2$\overrightarrow{EB}$,求二面角E-AM-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC=1,∠ABC=120°,若四面體ABCD體積的最大值為$\frac{\sqrt{3}}{4}$,則這個(gè)球的表面積為( 。
A.$\frac{500π}{81}$B.C.$\frac{25π}{9}$D.$\frac{100π}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示為一名曰“塹堵”的幾何體,已知AE⊥底面BCFE,DF∥AE,DF=AE=1,CE=$\sqrt{7}$,四邊形ABCD是正方形.
(1)《九章算術(shù)》中將四個(gè)面都是直角三角形的四面體稱為鱉臑,判斷四面體EABC是否為鱉臑,若是,寫出其每一個(gè)面的直角,并證明;若不是,請說明理由.
(2)求四面體EABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若一個(gè)圓柱的軸截面是一個(gè)面積為16的正方形,則該圓柱的表面積是24π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右頂點(diǎn)分別為A1,A2,左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,點(diǎn)B(4,0),F(xiàn)2為線段A1B的中點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)B且斜率不為0的直線l與橢圓C交于M,N兩點(diǎn),已知直線A1M與A2N相交于點(diǎn)G,求證:以點(diǎn)G為圓心,GF2的長為半徑的圓總與x軸相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是長方形,側(cè)棱PD⊥底面ABCD,且PD=AD=1,DC=2,過D作DF⊥PB于F,過F作FE⊥PB交PC于E.
(Ⅰ)證明:DE⊥平面PBC;
(Ⅱ)求平面DEF與平面ABCD所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案