如圖1,在直角梯形中,,,,點為中點.將沿折起,使平面平面,得到幾何體,如圖2所示.
(1)在上找一點,使平面;
(2)求點到平面的距離.
科目:高中數學 來源: 題型:解答題
(2013•浙江)如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC上的點.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若G是PC的中點,求DG與PAC所成的角的正切值;
(Ⅲ)若G滿足PC⊥面BGD,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四邊形ABCD是菱形,四邊形MADN是矩形,平面MADN平面ABCD,E,F分別為MA,DC的中點,求證:
(1)EF//平面MNCB;
(2)平面MAC平面BND.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四邊形ABCD與四邊形都為正方形,,F
為線段的中點,E為線段BC上的動點.
(1)當E為線段BC中點時,求證:平面AEF;
(2)求證:平面AEF平面;
(3)設,寫出為何值時MF⊥平面AEF(結論不要求證明).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖1,在Rt△ABC中,∠ABC=90°,D為AC中點,于(不同于點),延長AE交BC于F,將△ABD沿BD折起,得到三棱錐,如圖2所示.
(1)若M是FC的中點,求證:直線//平面;
(2)求證:BD⊥;
(3)若平面平面,試判斷直線與直線CD能否垂直?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.
(1)求證:AF∥平面BDE;
(2)求證:CF⊥平面BDE.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在錐體PABCD中,ABCD是邊長為1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分別是BC、PC的中點.證明:AD⊥平面DEF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com