分析 (1)由點E在平面ABCD內(nèi)的射影恰為A,可得AE⊥平面ABCD,進一步得到平面ABCD⊥平面ABEG,又以BD為直徑的圓經(jīng)過A,C,AD=AB,可得BCD為正方形,再由線面垂直的性質(zhì)可得BC⊥平面ABEG,從而得到EF⊥BC,結(jié)合AB=AE=GE,可得∠ABE=∠AEB=$\frac{π}{4}$,從而得到∠AEF+∠AEB=$\frac{π}{2}$,有EF⊥BE.再由線面垂直的判定可得EF⊥平面BCE,即平面EFP⊥平面BCE;
(2)解:連接DE,由(Ⅰ)知,AE⊥平面ABCD,則AE⊥AD,又AB⊥AD,則AB⊥平面ADE,得到GE⊥平面ADE.然后利用等積法求幾何體ADC-BCE的體積.
解答 (Ⅰ)證明:∵點E在平面ABCD內(nèi)的射影恰為A,
∴AE⊥平面ABCD,
又AE?平面ABEG,∴平面ABCD⊥平面ABEG,
又以BD為直徑的圓經(jīng)過A,C,AD=AB,∴ABCD為正方形,
又平面ABCD∩平面ABEG=AB,∴BC⊥平面ABEG,
∵EF?平面ABEG,∴EF⊥BC,
又AB=AE=GE,∴∠ABE=∠AEB=$\frac{π}{4}$,
又AG的中點為F,∴∠AEF=$\frac{π}{4}$.
∵∠AEF+∠AEB=$\frac{π}{2}$,∴EF⊥BE.
又BE?平面BCE,BC?平面BCE,BC∩BE=B,
∴EF⊥平面BCE,
又EF?平面EFP,∴平面EFP⊥平面BCE;
(Ⅱ)解:連接DE,由(Ⅰ)知,AE⊥平面ABCD,
∴AE⊥AD,又AB⊥AD,AE∩AD=A,
∴AB⊥平面ADE,又AB∥GE,∴GE⊥平面ADE.
∴VADC-BCE=${V}_{G-ADE}+{V}_{E-ABCD}=\frac{1}{3}•GE•{S}_{△ADE}$$+\frac{1}{3}•AE•{S}_{ABCD}$
=$\frac{1}{3}×2×\frac{1}{2}×2×2+\frac{1}{3}×2×2×2=4$.
∴幾何體ADC-BCE的體積為4.
點評 本題主要考查點、線、面的位置關(guān)系以及體積的求法,考查運算求解能力及空間想象能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有極大值,無極小值 | B. | 有極小值,無極大值 | ||
C. | 既無極大值,又無極小值 | D. | 既有極大值,又有極小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2] | B. | ($\frac{1}{2}$,1) | C. | (1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com