20.函數(shù)f(x)=2x3-3x2-12x+5的零點(diǎn)個(gè)數(shù)是(  )
A.0B.1C.2D.3

分析 先利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,然后求出f(x)的極大值與極小值,畫出圖象說明f(x)存在幾個(gè)零點(diǎn).

解答 解:函數(shù)f(x)=2x3-3x2-12x+5,
∴f′(x)=6x2-6x-12=6(x-2)(x+1)
f′(x)=0,x=2x=-1
當(dāng)x=-1時(shí),函數(shù)f(x)=3x3-3x2-12x+5取得極大值為:12;
當(dāng)x=2時(shí),函數(shù)f(x)=3x3-3x2-12x+5取得極小值為:-7,
畫出函數(shù)f(x)的圖象,如圖所示;

所以函數(shù)f(x)的零點(diǎn)有3個(gè).
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)與應(yīng)用問題,解題時(shí)用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性求出最值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\frac{3x}{x+3}$,數(shù)列{an}的通項(xiàng)由an=f(an-1)(n≥2且n∈N+)確定,a1=$\frac{1}{2}$,則a2011=
$\frac{1}{672}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在一個(gè)圓心為O,半徑為R半圓形鋼板上截取一塊矩形材料,怎樣截取能使這個(gè)矩形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.有一段演繹推理是這樣的:“如果一條直線平行于一個(gè)平面,則這條直線平行于該平面內(nèi)的所有直線;己知直線a?平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋ā 。?table class="qanwser">A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)滿足f(n+1)=$\frac{3f(n)+n}{3}$(n∈N*),且f(1)=1,則f(18)=(  )
A.20B.38C.52D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.以下四個(gè)命題中,不正確的有①②③④.
①直線a,b與平面α成等角,則a∥b;
②兩直線a∥b,直線a∥平面α,則必有b∥平面α;
③一直線與平面的一斜線在平面α內(nèi)的射影垂直,則必與斜線垂直;
④兩點(diǎn)A,B與平面α的距離相等,則直線AB∥平面α?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=cos2x-$\sqrt{3}$sinxcosx-$\frac{1}{2}$可以化為f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)).
(1)求出A,ω,φ的值并求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若等腰△ABC中,A=φ,a=2,求角B,邊c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.P(x,y)滿足x2+y2-4y+1=0,則
(1)x+y最大值?
(2)$\frac{y+1}{x}$取值范圍?
(3)x2-2x+y2+1的最值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.過橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)F1作一條傾角為45°的直線交橢圓于A、B兩點(diǎn),若滿足$\overrightarrow{A{F_1}}$=$\frac{1}{2}$$\overrightarrow{{F_1}B}$.
(1)求橢圓C的離心率;
(2)若橢圓C的左焦點(diǎn)F2到直線AB的距離為2,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案