18.定義在R上的偶函數(shù)f(x)滿足f(x-3)=-f(x),對(duì)?x1,x2∈[0,3]且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,則有( 。
A.f(49)<f(64)<f(81)B.f(49)<f(81)<f(64)C.f(64)<f(49)<f(81)D.f(64)<f(81)<f(49)

分析 根據(jù)題意,由f(x-3)=-f(x)分析可得f(x-6)=-f(x-3)=f(x),則函數(shù)f(x)是周期為6的函數(shù),進(jìn)而可得f(49)=f(1+6×8)=f(1),f(81)=f(-3+6×14)=f(-3),f(64)=f(-2+6×11)=f(-2),進(jìn)而結(jié)合函數(shù)的奇偶性可得則f(49)=f(1+6×8)=f(1),f(81)=f(-3)=f(3),f(64)=f(-2)=f(2),進(jìn)而結(jié)合題意分析可得函數(shù)f(x)在區(qū)間[0,3]上為增函數(shù),進(jìn)而有f(1)<f(2)<f(3),即f(49)<f(64)<f(81);即可得答案.

解答 解:根據(jù)題意,函數(shù)f(x)滿足f(x-3)=-f(x),
有f(x-6)=-f(x-3)=f(x),則函數(shù)f(x)是周期為6的函數(shù),
f(49)=f(1+6×8)=f(1),
f(81)=f(-3+6×14)=f(-3),
f(64)=f(-2+6×11)=f(-2),
又由函數(shù)為偶函數(shù),則f(49)=f(1+6×8)=f(1),
f(81)=f(-3)=f(3),
f(64)=f(-2)=f(2),
又由對(duì)?x1,x2∈[0,3]且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,
則函數(shù)f(x)在區(qū)間[0,3]上為增函數(shù),
進(jìn)而有f(1)<f(2)<f(3),
即f(49)<f(64)<f(81);
故選:A

點(diǎn)評(píng) 本題考查函數(shù)奇偶性與單調(diào)性的綜合運(yùn)用,涉及函數(shù)周期性的判定與應(yīng)用,注意由$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0判斷出函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知圓C:x2+y2=4,直線l:y=-x+b,圓C上恰有3個(gè)點(diǎn)到直線l的距離為1,則b=( 。
A.$±\sqrt{2}$B.$\sqrt{2}$C.-$\sqrt{2}$D.以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.等差數(shù)列{an}的前n項(xiàng)和為Sn,若$\overrightarrow{OB}={a_1}\overrightarrow{OA}+{a_{2015}}\overrightarrow{OC}$,且A,B,C三點(diǎn)共線(該直線不過(guò)點(diǎn)O),則S2015等于( 。
A.2015B.$\frac{2015}{2}$C.2014D.1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)(x∈R)滿足f(-x)=-f(x+4),若函數(shù)y=$\frac{1}{2-x}$與y=f(x)圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym),則$\sum_{i=1}^m$(xi+yi)=( 。
A.0B.mC.2mD.4m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,B=120°,AB=$\sqrt{2}$,AC=$\sqrt{6}$,則A的角平分線AD,則AD=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2+ax,若g(x)=$\frac{1}{e^x}$,對(duì)任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f'(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍是$(-∞,\frac{{\sqrt{e}}}{e}-8]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AA1=AB=2,AB⊥BC,BC=3.
(1)在棱AC上求一點(diǎn)M,使得AB1∥平面BC1M,說(shuō)明理由;
(2)若D為AC的中點(diǎn),求四棱錐B-AA1C1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,在平面直角坐標(biāo)系中有三條直線l1,l2,l3,其對(duì)應(yīng)的斜率分別為k1,k2,k3,則下列選項(xiàng)中正確的是( 。
A.k3>k1>k2B.k1-k2>0C.k1•k2<0D.k3>k2>k1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|2x+1|+|2x-3|.
(1)求不等式f(x)≤6的解集;
(2)已知a>0,若關(guān)于x的不等式f(x)<|a-2|的解集非空,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案