分析 由已知及正弦定理可求sinC=$\frac{1}{2}$,可得C=30°,利用三角形內(nèi)角和定理及已知可求∠BAD,進(jìn)而可求∠ADB的值,在△ABD中,由正弦定理即可解得AD的值.
解答 解:∵△ABC中,B=120°,AB=$\sqrt{2}$,AC=$\sqrt{6}$,
∴由正弦定理可得:sinC=$\frac{ABsinB}{AC}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{6}}$=$\frac{1}{2}$,
∴C=30°,A=180°-B-C=30°,
∵AD為A的角平分線,
∴∠BAD=15°,∠ADB=180°-∠B-∠BAD=45°,
∴在△ABD中,由正弦定理可得:AD=$\frac{ABsin∠B}{sin∠ADB}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點評 本題主要考查了正弦定理,三角形內(nèi)角和定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
廣告費用x(萬元) | 2 | 3 | 4 | 5 |
銷售額y(萬元) | 26 | 39 | 49 | 58 |
A. | 111.9萬元 | B. | 112.1萬元 | C. | 113.7萬元 | D. | 113.9萬元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 64 | C. | 512 | D. | 1024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(49)<f(64)<f(81) | B. | f(49)<f(81)<f(64) | C. | f(64)<f(49)<f(81) | D. | f(64)<f(81)<f(49) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,e-2) | B. | (e-2,+∞) | C. | (-∞,e-2) | D. | (e-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com