分析 (1)求出函數(shù)的定義域,計算f(-x)+f(x)=0,(2)根據(jù)函數(shù)單調性的定義證明即可;(3)根據(jù)函數(shù)的單調性和奇偶性得到關于a的不等式,解出即可.
解答 解:(1)f(x)的定義域是R,
f(-x)=1-$\frac{2}{{2}^{-x}+1}$=1-$\frac{{2}^{x+1}}{{2}^{x}+1}$,
而f(-x)+f(x)=2-2=0,f(-x)=-f(x),
故f(x)在R是奇函數(shù);
(2)設x1<x2,
則f(x1)-f(x2)
=1-$\frac{2}{{2}^{{x}_{1}}+1}$-1+$\frac{2}{{2}^{{x}_{2}}+1}$
=2($\frac{1}{{2}^{{x}_{2}}+1}$-$\frac{1}{{2}^{{x}_{1}}+1}$)
=$\frac{2{(2}^{{x}_{1}}{-2}^{{x}_{2}})}{{(2}^{{x}_{1}}+1){(2}^{{x}_{2}}+1)}$,
∵x1<x2,
∴${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,
∴f(x1)-f(x2)<0,
∴f(x)在(-∞,+∞)上是增函數(shù);
(3)由(1)(2)得:-f(4a-3)=f(3-4a),
f(2a+1)+f(4a-3)>0,
即f(2a+1)>-f(4a-3)=f(3-4a),
∴2a+1>3-4a,解得:a>$\frac{2}{7}$.
點評 本題考查了函數(shù)的單調性、奇偶性問題,考查轉化思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.76<log76<60.7 | B. | 0.76<60.7<log76 | C. | log76<60.7<0.76 | D. | log76<0.76<60.7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com