【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4

1)求橢圓的方程;

2)若是橢圓的左頂點(diǎn),經(jīng)過(guò)左焦點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),求的面積之差的絕對(duì)值的最大值,并求取得最大值時(shí)直線(xiàn)的方程.為坐標(biāo)原點(diǎn))

【答案】(1);(2)最大值為,直線(xiàn)的方程為

【解析】

1)由題意可知:,,根據(jù)橢圓的性質(zhì):,即可求得的值,從而求得橢圓方程;

2)由題意設(shè)直線(xiàn)方程,,將直線(xiàn)方程代入橢圓方程,根據(jù)韋達(dá)定理求得,根據(jù)三角形的面積公式,對(duì)進(jìn)行分類(lèi)討論,從而求得的最大值,此時(shí)即可求出直線(xiàn)方程.

1)由題意得,即,

因?yàn)?/span>,即,

,

故橢圓的方程為:;

2)設(shè)的面積為,的面積為,

設(shè)直線(xiàn)的方程為,,,

,整理得:,

由韋達(dá)定理可知:,

,

當(dāng)時(shí),,

當(dāng)時(shí),,

(當(dāng)且僅當(dāng),即時(shí)等號(hào)成立).

的最大值為,直線(xiàn)的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,,,是曲線(xiàn)上的點(diǎn),,,,軸正半軸上的點(diǎn),且,均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

1)寫(xiě)出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

2)猜測(cè)并證明數(shù)列的通項(xiàng)公式;

3)設(shè),集合,,若,求實(shí)常數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)x=1x=2處取得極值.

(1)ab的值;

(2)若方程有三個(gè)根,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為F,點(diǎn)在此拋物線(xiàn)上,,不過(guò)原點(diǎn)的直線(xiàn)與拋物線(xiàn)C交于A,B兩點(diǎn),以AB為直徑的圓M過(guò)坐標(biāo)原點(diǎn).

(1)求拋物線(xiàn)C的方程;

(2)證明:直線(xiàn)恒過(guò)定點(diǎn);

(3)若線(xiàn)段AB中點(diǎn)的縱坐標(biāo)為2,求此時(shí)直線(xiàn)和圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義,,倒平均數(shù).

1)若數(shù)列項(xiàng)的倒平均數(shù),求的通項(xiàng)公式;

2)設(shè)數(shù)列滿(mǎn)足:當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),.項(xiàng)的倒平均數(shù),求;

3)設(shè)函數(shù),對(duì)(1)中的數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立?若存在,求出最大的實(shí)數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為 的橢圓(a>b>0)過(guò)點(diǎn)M(,1).

(1)求橢圓的方程.

(2)已知與圓x2+y2=相切的直線(xiàn)l與橢圓C相交于不同兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,為左焦點(diǎn),為上頂點(diǎn),為右頂點(diǎn),若,拋物線(xiàn)的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.

(1)求的標(biāo)準(zhǔn)方程;

(2)是否存在過(guò)點(diǎn)的直線(xiàn),與交點(diǎn)分別是,使得?如果存在,求出直線(xiàn)的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線(xiàn)上隨機(jī)抽取100件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖):

規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷(xiāo)售時(shí)劣質(zhì)品每件虧損1元,優(yōu)等品每件盈利3元,特優(yōu)品每件盈利5元.以這100 件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.

(1)求每件產(chǎn)品的平均銷(xiāo)售利潤(rùn);

(2)該企業(yè)為了解年?duì)I銷(xiāo)費(fèi)用(單位:萬(wàn)元)對(duì)年銷(xiāo)售量(單位:萬(wàn)件)的影響,對(duì)近5年年?duì)I銷(xiāo)費(fèi)用和年銷(xiāo)售量數(shù)據(jù)做了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

16.30

23.20

0.81

1.62

表中,.

根據(jù)散點(diǎn)圖判斷,可以作為年銷(xiāo)售量(萬(wàn)件)關(guān)于年?duì)I銷(xiāo)費(fèi)用(萬(wàn)元)的回歸方程.

①求關(guān)于的回歸方程;

⑦用所求的回歸方程估計(jì)該企業(yè)應(yīng)投人多少年?duì)I銷(xiāo)費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益=銷(xiāo)售利潤(rùn)營(yíng)銷(xiāo)費(fèi)用,取

附:對(duì)于一組數(shù)據(jù),…,其回歸直線(xiàn)均斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某企業(yè)有職工5000人,其中男職工3500人,女職工1500人.該企業(yè)為了豐富職工的業(yè)余生活,決定新建職工活動(dòng)中心,為此,該企業(yè)工會(huì)采用分層抽樣的方法,隨機(jī)抽取了300名職工每周的平均運(yùn)動(dòng)時(shí)間(單位:h),匯總得到頻率分布表(如表所示),并據(jù)此來(lái)估計(jì)該企業(yè)職工每周的運(yùn)動(dòng)時(shí)間:

平均運(yùn)動(dòng)時(shí)間

頻數(shù)

頻率

[0,2

15

0.05

[24

m

0.2

[4,6

45

0.15

[68

755

0.25

[810

90

0.3

[10,12

p

n

合計(jì)

300

1

1)求抽取的女職工的人數(shù);

2)①根據(jù)頻率分布表,求出m、np的值,完成如圖所示的頻率分布直方圖,并估計(jì)該企業(yè)職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h的概率;

男職工

女職工

總計(jì)

平均運(yùn)動(dòng)時(shí)間低于4h

平均運(yùn)動(dòng)時(shí)間不低于4h

總計(jì)

②若在樣本數(shù)據(jù)中,有60名女職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h,請(qǐng)完成以下2×2列聯(lián)表,并判斷是否有95%以上的把握認(rèn)為“該企業(yè)職工毎周的平均運(yùn)動(dòng)時(shí)間不低于4h與性別有關(guān)”.

附:K2=,其中n=a+b+c+d

PK2k0

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

同步練習(xí)冊(cè)答案