精英家教網 > 高中數學 > 題目詳情

【題目】設數列是等差數列,數列是各項都為正數的等比數列,且.

1)求數列的通項公式;

2)設,,,試比較的大小.

【答案】(1)an2n1,bn3n.(2)當n1時,Tn2anbn;當n2時,Tn2anbn.

【解析】

1)用等差數列和等比數列的基本量法求解;

2)用錯位相減法求和.然后用作差法比較大。

1)設等差數列{an}公差為d,等比數列{bn}公比為q.

a11,b13,a2+b330,a3+b214,

,化為2q2q150,q3舍去).

q3d2.

an1+2n1)=2n1,bn3n.

2cn=(an+1bn2n3n,

Tn23+2×32+…+n3n),

3Tn2[32+2×33+…+n1×3n+n3n+1],

∴﹣2Tn23+32+…+3nn×3n+1)=212n×3n+13,

Tn.

2anbn22n1×3n.

Tn2anbn22n1×3n

n1時,Tn2anbn

n≥2時,Tn2anbn.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知直線和直線,射線的一個法向量為,點為坐標原點,且,直線之間的距離為2,點分別是直線上的動點,,于點,于點.

1)若,求的值;

2)若,且,試求的最小值;

3)若,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次體育興趣小組的聚會中,要安排6人的座位,使他們在如圖所示的6個椅子中就坐,且相鄰座位(12,23)上的人要有共同的體育興趣愛好.現已知這6人的體育興趣愛好如下表所示,且小林坐在1號位置上,則4號位置上坐的是

小林

小方

小馬

小張

小李

小周

體育興趣愛好

籃球,網球,羽毛球

足球,排球,跆拳道

籃球,棒球,乒乓球

擊劍,網球,足球

棒球,排球,羽毛球

跆拳道,擊劍,自行車

A.小方B.小張C.小周D.小馬

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等比數列{an}的前n項和為Sn,公比q0,S2=2a2-2,S3=a4-2,數列{an}滿足a2=4b1,nbn+1-n+1bn=n2+n,(nN*.

1)求數列{an}的通項公式;

2)證明數列{}為等差數列;

3)設數列{cn}的通項公式為:Cn=,其前n項和為Tn,求T2n.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論函數的單調區(qū)間;

(2)證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】光伏發(fā)電是利用太陽能電池及相關設備將太陽光能直接轉化為電能.近幾年在國內出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:

某位同學分別用兩種模型:①進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于):

經過計算得,

(1)根據殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.

(2)根據(1)的判斷結果及表中數據建立y關于x的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數時精確到0.01)

附:歸直線的斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當時,求證:;

(2)討論函數在R上的零點個數,并求出相對應的a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點在橢圓上,為坐標原點,直線的斜率與直線的斜率乘積為.

(1)求橢圓的方程;

(2)不經過點的直線)與橢圓交于,兩點,關于原點的對稱點為(與點不重合),直線軸分別交于兩點,,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將正方形沿對角線折疊,使平面平面, 若直線平面,,

求證:直線平面

求三棱錐的體積.

查看答案和解析>>

同步練習冊答案