【題目】若將函數(shù)y=2sin2x的圖象向左平移 個單位長度,則平移后的圖象的對稱軸為( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
【答案】B
【解析】解:將函數(shù)y=2sin2x的圖象向左平移 個單位長度,得到y(tǒng)=2sin2(x+ )=2sin(2x+ ),
由2x+ =kπ+ (k∈Z)得:x= + (k∈Z),
即平移后的圖象的對稱軸方程為x= + (k∈Z),
故選:B.
【考點精析】認真審題,首先需要了解正弦函數(shù)的對稱性(正弦函數(shù)的對稱性:對稱中心;對稱軸),還要掌握函數(shù)y=Asin(ωx+φ)的圖象變換(圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】設直線l的方程為(a+1)x+y+2﹣a=0(a∈R).
(1)若直線l在兩坐標軸上的截距相等,求直線l的方程;
(2)若直線l不經(jīng)過第二象限,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=|sin(ωx+ )|(ω>1)在區(qū)間[π, π]上單調遞減,則實數(shù)ω的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知t為實數(shù),函數(shù)f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
(1)若函數(shù)y=g(ax+1)﹣kx是偶函數(shù),求實數(shù)k的值;
(2)當x∈[1,4]時,f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
(3)設t=4,當x∈[m,n]時,函數(shù)y=|f(x)|的值域為[0,2],若n﹣m的最小值為 ,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在利用“五點法”作函數(shù)f(x)=Asin(ωx+)+t(其中A>0, )的圖象時,列出了如表格中的部分數(shù)據(jù).
x |
|
|
| ||
ωx+ | 0 |
| π |
| 2π |
f(x) | 2 | 6 | 2 | ﹣2 | 2 |
(1)請將表格補充完整,并寫出f(x)的解析式.
(2)若 ,求f(x)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:點M(1,3)不在圓(x+m)2+(y﹣m)2=16的內部,命題q:“曲線 表示焦點在x軸上的橢圓”,命題s:“曲線 表示雙曲線”.
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x)的圖象關于點(﹣ ,0)成中心對稱,且對任意的實數(shù)x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)++f(2 017)=( )
A.0
B.﹣2
C.1
D.﹣4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x),若在定義域內存在實數(shù)x,滿足f(﹣x)=﹣f(x),則稱f(x)為“局部奇函數(shù)”. (I) 已知二次函數(shù)f(x)=ax2+2bx﹣3a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(II) 設f(x)=2x+m﹣1是定義在[﹣1,2]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
(III) 設f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com