【題目】在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=2,CC1= ,則異面直線AB1和BC1所成角的正弦值為( )
A.
B.
C.
D.1
【答案】D
【解析】解:如圖,取A1C1中點(diǎn)E,AC中點(diǎn)F,并連接EF,則:EB1 , EC1 , EF三條直線兩兩垂直,∴分別以這三條直線為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系;
能確定以下幾點(diǎn)的坐標(biāo):
A(0,﹣1, ), ,B( ,0, ),C1(0,1,0);
∴ , ;
∴ ;
∴ ,∴異面直線AB1和BC1所成角為90°,∴sin90°=1.
故選D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用異面直線及其所成的角的相關(guān)知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,g(x)=x2﹣2bx+4,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)b的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a1=1,又a1 , a2 , a5成公比不為1的等比數(shù)列. (Ⅰ)求數(shù)列{an}的公差;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(4,﹣3),B(2,﹣1)和直線l:4x+3y﹣2=0.
(1)求在直角坐標(biāo)平面內(nèi)滿足|PA|=|PB|的點(diǎn)P的方程;
(2)求在直角坐標(biāo)平面內(nèi)一點(diǎn)P滿足|PA|=|PB|且點(diǎn)P到直線l的距離為2的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1是某高三學(xué)生進(jìn)入高中三年來的數(shù)學(xué)考試成績的莖葉圖,第1次到第第14次的考試成績依次記為A1 , A2 , …A14 , 如圖2是統(tǒng)計(jì)莖葉圖中成績在一定范圍內(nèi)考試次數(shù)的一個(gè)算法流程圖,那么算法流程圖輸出的結(jié)果是( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點(diǎn)在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求證:f(x)>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com