分析 (1)將f(x)寫成分段函數(shù)的形式,畫出函數(shù)圖象即可;(2)根據(jù)絕對值的幾何意義得到關(guān)于a的不等式,求出a的范圍即可.
解答 解:(1)根據(jù)題意將絕對值符號去掉得分段函數(shù):
$f(x)=\left\{{\begin{array}{l}{6-2x,x≤1}\\{4,1<x<5}\\{2x-6,x≥5}\end{array}}\right.$,
作出函數(shù)的圖象,如圖:
由圖象可知,函數(shù)f(x)的最小值為4;
(2)∵對?x∈R,f(x)≥1,
∴|x-a|+|x-5|≥1對一切實數(shù)x恒成立,
∵|x-a|+|x-5|=|a-x|+|x-5|≥|a-5|,
∴|a-5|≥1,
∴a≥6或a≤4,
∴a的取值范圍為(-∞,4]∪[6,+∞).
點評 本題考查了數(shù)形結(jié)合思想,考查絕對值的幾何意義,考查分類討論,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y=\frac{1}{x}$ | B. | y=1g|x| | C. | y=cosx | D. | y=x2+2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com