5.已知角α終邊上一點(diǎn)P(-3,4),則cos(-π-α)的值為( 。
A.-$\frac{4}{3}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

分析 利用任意角的三角函數(shù)的定義,誘導(dǎo)公式,求得cos(-π-α)的值.

解答 解:∵角α終邊上一點(diǎn)P(-3,4),∴cosα=$\frac{-3}{5}$=-$\frac{3}{5}$,
則cos(-π-α)=cos(π-α)=-cosα=$\frac{3}{5}$,
故選:C.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知圓O的方程為x2+y2=4,過(guò)圓外一點(diǎn)P(3,$\sqrt{7}$)作圓O的兩條切線,切點(diǎn)分別為T1和T2,則$\overrightarrow{P{T}_{1}}$•$\overrightarrow{P{T}_{2}}$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,三棱柱ABC-DEF中,側(cè)面ABED是邊長(zhǎng)為2的菱形,且∠ABE=$\frac{π}{3}$,BC=$\frac{\sqrt{21}}{2}$,四棱錐F-ABED的體積為2,點(diǎn)F在平面ABED內(nèi)的正投影為G,且G在AE上,點(diǎn)M是在線段CF上,且CM=$\frac{1}{4}$CF.
(Ⅰ)證明:直線GM∥平面DEF;
(Ⅱ)求二面角M-AB-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤0}\\{x-y≤0}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$,則z=$\frac{y-2}{x+3}$的最小值為( 。
A.-2B.-$\frac{2}{3}$C.-$\frac{12}{5}$D.$\frac{\sqrt{2}-4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.集合A={1,3,5,7},B={x|x2-4x≤0},則A∩B=( 。
A.(1,3)B.{1,3}C.(5,7)D.{5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.定義:若存在實(shí)數(shù)x1∈[-2,-1],x2∈[a,32]使2${\;}^{-{x}_{1}}$=log2x2成立,則稱a為指對(duì)實(shí)數(shù),那么在a∈[-20,20]上成為指對(duì)實(shí)數(shù)的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{x+y≤0}\\{x-y≤0}\\{{x}^{2}+{y}^{2}≤{r}^{2}}\end{array}\right.$(r為常數(shù))表示的平面區(qū)域的面積為π,若x,y滿足上述約束條件,則z=$\frac{x+y+1}{x+3}$的最小值為( 。
A.-1B.-$\frac{5\sqrt{2}+1}{7}$C.$\frac{1}{3}$D.-$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)a是一個(gè)各位數(shù)字都不是0且沒(méi)有重復(fù)數(shù)字的三位數(shù),將組成a的3個(gè)數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a),(例如a=746,
則I(a)=467,D(a)=764)閱讀如右圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè)a,輸出的結(jié)果b=495.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=2sin($\frac{x+φ}{2}$)cos($\frac{x+φ}{2}$)(|φ|<$\frac{π}{2}$),且對(duì)任意的x∈R,f(x)≤f($\frac{π}{6}$),則( 。
A.f(x)=f(x+π)B.f(x)=f(x+$\frac{π}{2}$)C.f(x)=f($\frac{π}{3}$-x)D.f(x)=f($\frac{π}{6}$-x)

查看答案和解析>>

同步練習(xí)冊(cè)答案