13.如圖所示,在正方體ABCD-A1B1C1D1中,E為CD的中點,求證:平面AC1E⊥平面A1BD.

分析 根據(jù)BD⊥AC,BD⊥CC1得出BD⊥平面ACC1,從而BD⊥AC1,同理得出A1B⊥AC1,于是AC1⊥平面A1BD,從而得出結(jié)論.

解答 證明:連接AC,
∵CC1⊥平面ABCD,BD?平面ABCD,
∴BD⊥CC1,
∵四邊形ABCD是正方形,
∴BD⊥AC,
又AC?平面ACC1,CC1?平面ACC1,AC∩CC1=C,
∴BD⊥平面ACC1,又AC1?平面ACC1
∴BD⊥AC1,
同理可得:A1B⊥AC1,
又A1B?平面A1BD,BD?平面A1BD,A1B∩BD=B,
∴AC1⊥平面A1BD,又AC1?平面AC1E,
∴平面AC1E⊥平面A1BD.

點評 本題考查了線面垂直的判定與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.學(xué)了異面直線的概念和作法后,老師出了下面一道題:“已知平面α,β,直線a,b為異面直線,a?α,b?β,α∩β=c,請問:直線c與直線a,b有怎樣的位置關(guān)系?”甲、乙、丙、丁四位同學(xué)給出了四種不同的答案,甲:c與a,b都不相交;乙:c與a,b都相交;丙:c至少與a,b中的一條相交;。篶至多與a,b中的一條相交.問:他們的答案中哪些是正確的?哪些是錯誤的?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=1-2x2,g(x)=x2-2x,若F(x)=$\left\{\begin{array}{l}{g(x),f(x)≥g(x)}\\{f(x),f(x)<g(x)}\end{array}\right.$ 求函數(shù)F(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.分別作出函數(shù)①y=-3x+1,②y=x2+2x的圖象,并根據(jù)圖象回答以下兩個問題:
(1)以上兩個函數(shù)有無最大值或最小值?如果有,請求出.
(2)以上兩個函數(shù)在(-∞,+∞)上是否是單調(diào)函數(shù)?如果不是,請說出它的變化趨勢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=ax2-x+1在區(qū)間(-∞,2)內(nèi)是減函數(shù),則a的取值范圍是( 。
A.(0,$\frac{1}{4}$]B.[0,$\frac{1}{4}$]C.[2,+∞)D.(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1,DD1的中點.
(1)證明:A,E,C1,F(xiàn)四點共面;
(2)畫出平面AEC1F與平面ABCD的交線(寫出畫法和理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知關(guān)于x不等式2x2+bx-c>0的解集為{x|x<-1或x>3},則關(guān)于x的不等式bx2+cx+4≥0的解集為(  )
A.{x|x≤-2或x≥$\frac{1}{2}$}B.{x|x≤-$\frac{1}{2}$或x≥2}C.{x|-$\frac{1}{2}$≤x≤2}D.{x|-2≤x≤$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.畫出不等式組$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$表示的平面區(qū)域,并回答下列問題:
(1)指出x,y的取值范圍;
(2)平面區(qū)域內(nèi)有多少個整點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若“?x∈R,使x2-2ax+2<0”是假命題,則實數(shù)a的范圍$[-\sqrt{2},\sqrt{2}]$.

查看答案和解析>>

同步練習(xí)冊答案