已知函數(shù)f(x)=
2
4x+2
,令g(n)=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),則g(n)=( 。
A、0
B、
1
2
C、
n
2
D、
n+1
2
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)+f(1-x)=
2
4x+2
+
2
41-x+2
=
2
4x+2
+
4x
2+4x
=1,能求出g(n)=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)=
n+1
2
解答: 解:∵f(x)=
2
4x+2
,
∴f(x)+f(1-x)=
2
4x+2
+
2
41-x+2

=
2
4x+2
+
4x
2+4x
=1,
∴g(n)=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)=
n+1
2

故選:D.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班對(duì)喜愛(ài)打籃球是否與性別有關(guān)進(jìn)行了調(diào)查,以本班的50人為對(duì)象進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜愛(ài)打籃球不喜愛(ài)打籃球合  計(jì)
男生5
女生10
合計(jì)50
已知在全部50人中隨機(jī)抽取1人,抽到喜愛(ài)打籃球的學(xué)生的概率為
3
5

(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(Ⅱ)是否有99.9%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
(Ⅲ)已知不喜愛(ài)打籃球的5位男生中,A1,A2,A3喜歡踢足球,B1,B2喜歡打乒乓球,現(xiàn)再?gòu)南矚g踢足球、喜歡打乒乓球的男生中各選出1名同學(xué)進(jìn)行其他方面的調(diào)查,求A1和B1至少有一個(gè)被選中的概率.
附:
P(K2≥k)0.050.010.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開(kāi)式中所有奇次項(xiàng)系數(shù)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,C=90°,
AB
=(1,k),
AC
=(2,4),則實(shí)數(shù)k的值是( 。
A、
9
2
B、-
9
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
1
3
,求tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為定義在(-3,3)上的奇函數(shù),當(dāng)-3<x<0時(shí),f(x)=log2(3+x),則f(0)+f(1
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式2a-sin2x-acosx>2的解集為全體實(shí)數(shù),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3-x2+x-5在R上無(wú)極值,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案