6.下列命題正確的是( 。
A.若兩條直線和同一個(gè)平面平行,則這兩條直線平行
B.若一直線與兩個(gè)平面所成的角相等,則這兩個(gè)平面平行
C.若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行
D.若兩個(gè)平面垂直于同一個(gè)平面,則這兩個(gè)平面平行

分析 若兩條直線和同一個(gè)平面平行,則這兩條直線可能平行、相交或?yàn)楫惷嬷本,排除A;利用直線與平面所成的角的定義,可排除B;利用線面平行的判定定理和性質(zhì)定理可判斷C正確;利用面面垂直的性質(zhì)可排除D.

解答 解:A.若兩條直線和同一個(gè)平面平行,則這兩條直線可能平行、相交或?yàn)楫惷嬷本,故不正確;
B、若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行、相交或異面,故B錯(cuò)誤;
C、設(shè)平面α∩β=a,l∥α,l∥β,由線面平行的性質(zhì)定理,在平面α內(nèi)存在直線b∥l,在平面β內(nèi)存在直線c∥l,所以由平行公理知b∥c,從而由線面平行的判定定理可證明b∥β,進(jìn)而由線面平行的性質(zhì)定理證明得b∥a,從而l∥a,故C正確;
D,若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行或相交,例如:天花板與兩個(gè)相交平面的位置關(guān)系;
故選:C.

點(diǎn)評(píng) 本題主要考查了空間線面平行和垂直的位置關(guān)系,線面平行的判定和性質(zhì),面面垂直的性質(zhì)和判定,空間想象能力,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x∈N|x-2≤0},集合B={x|x2-x-2<0},則A∩B=( 。
A.{1,2}B.{0,1}C.{0,1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的通項(xiàng)公式為an=2n-(-1)n,n∈N*
(1)在數(shù)列{an}中,是否存在連續(xù)3項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng),若不存在,說(shuō)明理由;
(2)試證在數(shù)列{an}中,一定存在滿足條件1<r<s的正整數(shù)r、s,使得a1、ar、as成等差數(shù)列;并求出正整數(shù)r、s之間的關(guān)系;
(3)在數(shù)列{an}中是否存在某4項(xiàng)成等差數(shù)列?若存在,求出所有滿足條件的項(xiàng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°,$|\overrightarrow a|=1$,$|2\overrightarrow a-\overrightarrow b|=\sqrt{7}$,則$|\overrightarrow b|$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x-2|+|3x+a|.
(1)當(dāng)a=1時(shí),解不等式f(x)≥5;
(2)若存在x0滿足f(x0)+2|x0-2|<3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=\frac{{{a_1}({{4^n}-1})}}{3}$,若a3=8,則a1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在區(qū)間[-1,4]上隨機(jī)選取一個(gè)數(shù)x,則x≤1的概率為( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在△ABC中,$tanA=\frac{1}{2},cosB=\frac{{3\sqrt{10}}}{10}$,則tanC=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+1(x≤0)}\\{|lo{g}_{2}x|(x>0)}\end{array}\right.$,若方程f(x)=k有四個(gè)不同的實(shí)數(shù)根,x1、x2、x3、x4,則x1+x2+x3+x4的取值范圍是( 。
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,$\frac{9}{4}$)C.[$\frac{1}{2}$,$\frac{9}{4}$]D.[$\frac{9}{4}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案