精英家教網 > 高中數學 > 題目詳情

【題目】下列說法錯誤的是  

A. 棱柱的側面都是平行四邊形

B. 所有面都是三角形的多面體一定是三棱錐

C. 用一個平面去截正方體,截面圖形可能是五邊形

D. 將直角三角形繞其直角邊所在直線旋轉一周所得的幾何體是圓錐

【答案】B

【解析】

由棱柱的性質可判斷A;可舉正八面體可判斷B;用一個平面去截正方體,與正方體的五個面相交,可判斷C;由圓錐的定義可判斷D

由棱柱的性質可得棱柱的側面都是平行四邊形,則A正確;

所有面都是三角形的多面體不一定是三棱錐,比如正八面體的各個面都是正三角形,則B錯誤;

用一個平面去截正方體,與正方體的五個面相交,可得截面圖形是五邊形,則C正確;

由圓錐的定義可得直角三角形繞其直角邊所在直線旋轉一周所得的幾何體是圓錐,則D正確.

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知兩個不共線的向量滿足, , .

1)若垂直,求的值;

2)當時,若存在兩個不同的使得成立,求正數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列中,在直線

(1)求數列{an}的通項公式;

(2)令,數列的前n項和為

(ⅰ)求;

(ⅱ)是否存在整數λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)若函數上單調遞增,求的取值范圍;

(2)當時,設函數的最小值為,求證:;

(3)求證:對任意的正整數,都有

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數滿足,且的最小值是.

(1)求的解析式;

(2)若關于的方程在區(qū)間上有唯一實數根,求實數的取值范圍;

(3)函數,對任意都有恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市為了解游客人數的變化規(guī)律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.

根據該折線圖,下列結論錯誤的是(  )

A. 月接待游客量逐月增加

B. 年接待游客量逐年增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點的雙曲線的右焦點為,右頂點為.

(1)求雙曲線的方程;

(2)若直線與雙曲線恒有兩個不同的交點,且(其中為坐標原點),求實數取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐的底面為平行四邊形,且,, 分別為中點,過作平面分別與線段相交于點.

(Ⅰ)在圖中作出平面使面 (不要求證明);

(II)若,在(Ⅰ)的條件下求多面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】燕山公園計劃改造一塊四邊形區(qū)域鋪設草坪,其中百米,百米,,,草坪內需要規(guī)劃4條人行道以及兩條排水溝,其中分別為邊的中點.

1)若,求排水溝的長;

2)當變化時,求條人行道總長度的最大值.

查看答案和解析>>

同步練習冊答案