13.設(shè)數(shù)列{an}是首項為1公比為2的等比數(shù)列前n項和Sn,若log4(Sk+1)=4,則k=8.

分析 由log4(Sk+1)=4,可得:Sk+1=44,解得Sk=28-1.再利用等比數(shù)列的求和公式即可得出.

解答 解:由log4(Sk+1)=4,可得:Sk+1=44,解得Sk=28-1.
又Sk=$\frac{{2}^{k}-1}{2-1}$=2k-1,
∴28-1=2k-1,
解得k=8.
故答案為:8.

點評 本題主要考查了等比數(shù)列的求和公式、對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)等比數(shù)列{an}的前n項和為Sn,若8a2+a1=0,則下列式子中數(shù)值不能確定的是(  )
A.$\frac{{a}_{5}}{{a}_{3}}$B.$\frac{{S}_{5}}{{S}_{3}}$C.$\frac{{a}_{n+1}}{{a}_{n}}$D.$\frac{{S}_{n+1}}{{S}_{n}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知不等式$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≥0對于x∈[-$\frac{π}{3}$,$\frac{π}{3}$]恒成立,則實數(shù)m的取值范圍是( 。
A.(-∞,-$\sqrt{2}$]B.(-∞,$\frac{\sqrt{2}}{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.?dāng)?shù)列{an}的前n項和為Sn=4n2-n+2,則該數(shù)列的通項公式為( 。
A.an=8n+5(n∈N*B.an=$\left\{\begin{array}{l}5(n=1)\\ 8n-5(n≥2,n∈{N^*})\end{array}\right.$
C.an=8n+5(n≥2)D.an=8n+5(n≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若x,y滿足$\left\{\begin{array}{l}{1<x<6}\\{2<y<8}\end{array}\right.$,則$\frac{x}{y}$的取值范圍是$(\frac{1}{8},3)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個焦點為F,該橢圓上有一點A,滿足△OAF是等邊三角形(O為坐標(biāo)原點),則橢圓的離心率是( 。
A.$\sqrt{3}-1$B.$2-\sqrt{3}$C.$\sqrt{2}-1$D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義在R上的奇函數(shù)f(x)在[0,+∞)上遞減,若f(x3-2x+a)<f(x+1)對x∈[-1,2]恒成立,則a的取值范圍為( 。
A.(-3,+∞)B.(-∞,-3)C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知二次函數(shù)y=a(a+1)x2-(2a+1)x+1,當(dāng)a=1,2,3,…,n,…時,其拋物線在x軸上截得線段長依次為d1,d2,…,dn,…,則$\underset{lim}{n→∞}$(d1+d2+…+dn)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知M,F(xiàn)為橢圓的$C:\frac{x^2}{20}+\frac{y^2}{16}=1$的上頂點和右焦點,直線l與橢圓C交與A,B兩點,且三角形△MAB的重心恰為F,則直線l的方程為6x-5y-28=0.

查看答案和解析>>

同步練習(xí)冊答案