【題目】在三棱柱中平面平面,,是棱的中點.
(1)求證:平面平面;
(2)若,求二面角的余弦值.
【答案】(1)見解析;(2) .
【解析】
(1)取的中點,連接與交于點,連接,,結(jié)合已知條件得是平行四邊形,由平面平面的性質(zhì)定理得平面,且,得平面,即可得結(jié)論;
(2)由已知條件得 面,以 分別為軸建立空間直角坐標系,利用向量法求二面角的余弦值即可.
(1)取的中點,連接與交于點,連接,,
則 為的中點, ,且,所以是平行四邊形.
又是棱的中點,所以 .
側(cè)面底面,,且 ,,
所以平面 ,得平面,又平面,
所以平面平面.
(2)連接,因為,所以是等邊三角形,設.
故 面 ,由已知可得 .以 分別為軸建立空間直角坐標系.
則 , ,
設平面的法向量為 則,
所以 ,取 ,所以
設平面的法向量為
,
則,所以,取 ,
故 ,因為二面角為銳角,所以其余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知點O(0,0),M(-4,0),N(4,0),P(0,-2),Q(0,2),H(4,2).線段OM上的動點A滿足;線段HN上的動點B滿足.直線PA與直線QB交于點L,設直線PA的斜率記為k,直線QB的斜率記為k',則kk'的值為______;當λ變化時,動點L一定在______(填“圓、橢圓、雙曲線、拋物線”之中的一個)上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增,命題q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若p∨q為真命題,p∧q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù), ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】改革開放40年來,體育產(chǎn)業(yè)蓬勃發(fā)展反映了“健康中國”理念的普及.下圖是我國2006年至2016年體育產(chǎn)業(yè)年增加值及年增速圖.其中條形圖表示體育產(chǎn)業(yè)年增加值(單位:億元),折線圖為體育產(chǎn)業(yè)年增長率(%).
(Ⅰ)從2007年至2016年這十年中隨機選出一年,求該年體育產(chǎn)業(yè)年增加值比前一年多億元以上的概率;
(Ⅱ)從2007年至2011年這五年中隨機選出兩年,求至少有一年體育產(chǎn)業(yè)年增長率超過25%的概率;
(Ⅲ)由圖判斷,從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增長率方差最大?從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增加值方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,, ,,,,為側(cè)棱上一點.
(Ⅰ)若,求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在側(cè)棱上是否存在點,使得平面?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,,,,,分別為,邊的中點,以為折痕把折起,使點到達點的位置,且..
(Ⅰ)證明:平面;
(Ⅱ)設為線段上動點,求直線與平面所成角的正弦值的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com