7.有一個(gè)不透明的袋子,裝有4個(gè)完全相同的小球,球上分別編有數(shù)字1,2,3,4.
(Ⅰ)若逐個(gè)不放回取球兩次,求第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3整除的概率;
(Ⅱ)若先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為a,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為b,求直線ax+by+1=0與圓x2+y2=$\frac{1}{16}$沒有公共點(diǎn)的概率.

分析 (Ⅰ)用(a,b)(a表示第一次取到球的編號(hào),b表示第二次取到球的編號(hào))表示先后二次取球構(gòu)成的基本事件,求出所有的基本事件數(shù),設(shè)“第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3整除”為事件A,求出A的個(gè)數(shù),然后求解概率.
(Ⅱ)列出所有的基本事件,通過“直線與圓${x^2}+{y^2}=\frac{1}{16}$沒有公共的”為事件B,求出事件B包含的基本事件數(shù),然后求解概率.

解答 解:(Ⅰ)用(a,b)(a表示第一次取到球的編號(hào),b表示第二次取到球的編號(hào))表示先后二次取球構(gòu)成的基本事件,則所有的基本事件有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12個(gè).…(2分)
設(shè)“第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3整除”為事件A,
則事件A包含的基本事件有:
(2,1),(2,4),(4,2)共有3個(gè),…(4分)
∴P(A)=$\frac{3}{12}$=$\frac{1}{4}$.…(6分)
(Ⅱ)所有的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16個(gè),…(8分)
設(shè)“直線與圓${x^2}+{y^2}=\frac{1}{16}$沒有公共的”為事件B,
由題意$\frac{1}{{\sqrt{{a^2}+{b^2}}}}>\frac{1}{4}$,…(9分)
即a2+b2<16,則事件B包含的基本事件有:
(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8個(gè),…(10分)
∴P(B)=$\frac{8}{16}$=$\frac{1}{2}$.…(12分)

點(diǎn)評(píng) 本題考查概率的求法,直線與圓的位置關(guān)系的應(yīng)用,圓的方程的綜合應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=xlnx+mx,g(x)=-x2+ax-3.
(1)若函數(shù)f(x)在(1,+∞)上為單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(2)若當(dāng)m=0時(shí),對(duì)任意x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若-1<x<4是x>2m2-3的充分不必要條件,則實(shí)數(shù)m的取值范圍是( 。
A.[-3,3]B.(-∞,-3]∪[3,+∞)C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.銀川一中在高一、高二兩個(gè)年級(jí)學(xué)生中各抽取100人的樣本,進(jìn)行普法知識(shí)調(diào)查,其結(jié)果如表:
高一高二總計(jì)
合格人數(shù)70x150
不合格人數(shù)y2050
總計(jì)100100200
(1)求x,y的值.
(2)在犯錯(cuò)誤的概率不超過1%的情況下,是否認(rèn)為“高一、高二兩個(gè)年級(jí)這次普法知識(shí)調(diào)查結(jié)果有差異”?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知cosα•tanα<0,那么角α是( 。
A.第一或第二象限角B.第二或第三象限角
C.第三或第四象限角D.第一或第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)A={x|x>2},B={x|x<a},A∩B=∅,并且二次函數(shù)f(x)=x2+ax在[2,+∞)是單調(diào)遞增的函數(shù).
(1)若函數(shù)f(x)是偶函數(shù),求a的值;
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知兩定點(diǎn)A(-3,0)和B(3,0),動(dòng)點(diǎn)P(x,y)在直線l:y=-x+5上移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的離心率的最大值為( 。
A.$\frac{{3\sqrt{17}}}{17}$B.$\frac{{3\sqrt{2}}}{5}$C.$\frac{{3\sqrt{17}}}{34}$D.$\frac{{2\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$cos(\frac{3}{2}π+α)={log_8}\frac{1}{4}$,且$α∈(-\frac{π}{2},0)$,求tan(2π-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,A=30°,則$\sqrt{3}sinA-cos({B+C})$的值為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案